

Transport in Review

Working Paper Series

SOLOMON ISLANDS

An Asian Transport Observatory (ATO) Publication

Transport in Review Working Paper Series: Solomon Islands

January 2026

Contributors: Sudhir Gota, Alvin Mejia, Mel Eden, Adwait Limaye, Benjamin Soco, Aaron Salang

Cover page picture credits: SICCI

ATO (2026). Transport in Review Working Paper Series: Solomon Islands

<https://asiantransportobservatory.org/analytical-outputs/transport-in-review/solomon-islands-2026/>

Disclaimer: The Asian Transport Observatory (ATO) project collects, collates, and organizes data from publicly available official, as well as reputable and peer-reviewed secondary sources, which may contain incomplete or inconsistent data. It is important to note that the ATO does not generate data. Moreover, while the ATO carries out quality control and assurance of whether the data are truthfully reflected in the ATO, the ATO does not make any warranties or representations as to the appropriateness, quality, accuracy, or completeness of the data in the ATO databases, and in the knowledge products that are produced from such. Users are encouraged to scrutinize, verify, interpret, and judge the data before utilizing them.

ASIAN INFRASTRUCTURE
INVESTMENT BANK

Contents

List of Tables and Figures	4
List of Abbreviations	5
Executive Summary	6
Introduction	8
Enhance Sustainable Connectivity and Freight	10
Ensure Access to Sustainable Transport for All	20
Shape People Centric Urban Mobility	23
Make Transport Safe And Secure	28
Advance low-carbon, resilient, and environmentally sound transport systems	30
Leverage Science, Technology, and Innovation for Sustainable Transport	43
Crosscutting	45
Transport Sector's Economic Contribution and Employment	46
Gender in the Transport Sector: Addressing Disparities	47
Transport Investments - ODA and PPP	48
Summary	50
References	51
Annex 1. Economy ISO Codes	56

List of Tables and Figures

Table 1: Solomon Islands Plan for a Sustainable Maritime Future - Priority Actions
 Table 2: Target in 2035 (KPI)

Figure 1. Sustainable Transport Assessment Framework
 Figure 2: Road Infrastructure Kilometers per Thousand Population
 Figure 3. Population Estimates (WorldPop) and Strategic Road Network (OSM) – Guadalcanal Island, Solomon Islands
 Figure 4: Organizational Structure
 Figure 5. Aviation Infrastructure and Facilities – Solomon Islands
 Figure 6: Aerodrome Area per Capita, 2022
 Figure 7: Registered Carrier Departures per Thousand Population, 2021
 Figure 8. Maritime Transport Infrastructure and Facilities — Solomon Islands
 Figure 9: Port Area in 2024 (X-axis is GDP per Capita in USD)
 Figure 10: Liner Shipping Connectivity Index, 2006-2024
 Figure 11: Logistics Performance Index
 Figure 12: UNCTAD's Sustainable Freight Transport (SFT) Index
 Figure 13. Rural Access Index vs. GDP per Capita (2022)
 Figure 14: Road Density
 Figure 15: Transport Mode Share in Honiara City (Categorized by Age) – Male
 Figure 16: Transport Mode Share in Honiara City (Categorized by Age) – Female
 Figure 17: Public Transport Modal Share
 Figure 18: Street Network Disconnectedness Index
 Figure 19: Causes of Mortalities in Solomon Islands (2021)

Figure 20: Transport Energy Consumption
 Figure 21: Fuel Efficiency of Representative Vehicle Stock
 Figure 22: Solomon Islands GHG Emissions (Thousand tons)
 Figure 23: Transport GHG Emissions Intensity with GDP
 Figure 24: Share of EV in Total Road Vehicle Imports across Asia-Pacific and the World (2024)
 Figure 25: Grid Emission Factor in the Pacific 2000-2024
 Figure 26: Demand Projection for Land Transport
 Figure 27: Demand Projection for Sea Transport
 Figure 28: Annual CO2 Emissions Before and After Implementation of State Action Plan Measures
 Figure 29: Average Annual Losses to Transport Infrastructure as Share of GDP
 Figure 30: Ambient PM2.5 in Solomon Islands, Contribution by Source
 Figure 31: Share of Domestic Transport in Total Economy-wide Emissions, by Mode and Substance
 Figure 32. Health Damages from PM 2.5 Exposure (2019)
 Figure 33: Share of Population Using the Internet in Solomon Islands
 Figure 34: Growth Drivers
 Figure 35: External Cost to Society due to Fossil Fuel Subsidies in Transport, 2024
 Figure 36: Gross Value Added per Employee in Solomon Islands
 Figure 37: Employment in the Transport Sector (Operations and Services; ISIC category H and J) in Solomon Islands
 Figure 38: Road User Revenues Share
 Figure 39: Official Development Assistance to the Transport Sector in Solomon Islands

Abbreviations

2/3W	Two/ Three-Wheeler	MID	Ministry of Infrastructure Development
2G, 3G, 4G	Generation of wireless data communication for mobile carriers	MJ/USD	Megajoules per US Dollar
AAL	Average annual losses	MWSD	Mechanical Works Services Department
ABMSD	Architecture Building Management Services Department	NAPA	National Adaptation Programme of Action
ADB	Asian Development Bank	NAPA	National Adaptation Plan (
ASYCUDA	Automated System for Customs Data	NDC	Nationally Determined Contribution
ATO	Asian Transport Observatory	NOx	Nitrogen Oxides
BAU	Business-As-Usual	NRVI	National Road Vulnerability Index
BC	Black Carbon	NTP	National Transport Plan
CIESIN	Center for Integrated Earth System Information	OBMs	Outboard Motors
CNG	Compressed Natural Gas	ODA	Official Development Assistance
CO2	Carbon Dioxide	OECD	Organisation for Economic Co-operation and Development
COPD	Chronic Obstructive Pulmonary Disease	OSM	Open Street Map
CSSD	Corporate Support Services Department	PM2.5	Particulate Matter (particles less than 2.5 micrometers)
CORSIA	Carbon Offsetting and Reduction Scheme for International Aviation	PPP	Public-Private Partnership or Purchasing Power Parity
EV	Electric Vehicle	RAI	Rural Access Index
GDP	Gross Domestic Product	SAF	Sustainable Aviation Fuel
GEF	Global Environment Facility	SDG	Sustainable Development Goals
GHA	Greater Honiara Area	SDSN	Sustainable Development Solutions Network
GHG	Greenhouse Gas	SEDAC	Socioeconomic Data and Applications Center
GHTMPS	Greater Honiara Transport Master Plan Study	SFT	Sustainable Freight Transport
GVA	Gross Value Added	SIMA	Solomon Islands Maritime Authority
HDV	Heavy Duty Vehicle	SIMSA	Solomon Islands Maritime Safety Administration
IATA	International Air Transport Association	SIPA	Solomon Islands Ports Authority
IRAP	Infrastructure Rating and Assessment Program	SIRAP	Solomon Islands Ports and Aviation Project
JICA	Japan International Cooperation Agency	SITAMS	Solomon Islands Transport Asset Management System
KPI	Key Performance Indicator	SNDi	Street-Network Disconnectedness Index
kt	kiloton	SOx	Sulfur Oxides
L	liters	TEU	Twenty-foot Equivalent Unit
LDC	Least Developed Countries	TIMSD	Transport Infrastructure Management Service Department
LDV	Light Duty Vehicle	ToU	Time-of-use
LEDS	Low Emissions Development Strategy	TJ	Terajoule
LPI	Logistics Performance Index	UN	United Nations
LSCI	Liner Shipping Connectivity Index	UNCTAD	United Nations Conference on Trade and Development
		UNEP	United Nations Environment Program
		USD	US Dollars
		USD (PPP)	USD (Purchasing power parities)
		VAT	Value-Added Tax
		WB	World Bank

Executive Summary

The Solomon Islands stands at a defining threshold. With a population of 819,000, dispersed across 992 volcanic and coral islands, the nation is poised to graduate from Least Developed Country (LDC) status in December 2027. This archipelago, stretching 1,600 km across the Southwestern Pacific, struggles with a tyranny of distance that limits its economic potential and social cohesion. Transport is the mechanism to bridge this divide, yet the current system is fragile. While the sector contributes 6-7 percent to the nation's gross value added, it operates under the strain of chronic under-resourcing, climate volatility, and structural inefficiency.

The Infrastructure Gap - The physical foundation of the economy is eroding. Official records list 1,751 km of roads, but the reality on the ground is a sprawling, unmonitored network of approximately 3,440 km, suggesting vast unaccounted infrastructure. Quality has suffered. Only 67 percent of the core network remains in maintainable condition, and overall, barely 15 percent of the road network is rated fair to good. A structural disconnection exists: roads are built, but the bridges to connect them are missing, severing economic corridors.

Maritime transport remains the lifeline for domestic trade, yet it relies on a fleet of vessels with an average age of 29 years—end-of-life assets that are inefficient and unsafe. Port infrastructure is similarly constrained, with Honiara's international gateway choked by urban congestion and limited land reclamation options. Aviation, essential for tourism and rapid connectivity, collapsed following the pandemic and has been slow to recover; per capita trip rates are not expected to return to 2019 levels until 2044.

Inequality in Access - Mobility in the Solomon Islands is unequal. While three out of four citizens live in rural areas, the Rural Access Index has fallen to an estimated 52 percent. This leaves approximately 240,000 people without access to all-weather roads, effectively locking them out of the wage economy.

In urban centers, rapid motorization masks poor accessibility. Honiara suffers from the highest "street sprawl" index in the Asia-Pacific region, characterized by disconnected streets and low intersection density. Public transport is a chaotic market of high frequency but low reliability, dominated by owner-operator minibuses without schedules. This system fails the most vulnerable; women comprise nearly half the population but hold only 7.3 percent of transport jobs, and 24 percent of road crash fatalities are female.

The Cost of Inaction: Safety and Climate - The transport sector is completely dependent on imported fossil fuels, consuming nearly 60 million liters of diesel and 40 million liters of petrol annually. Consequently, transport accounts for 25 percent of national greenhouse gas emissions. Despite ambitious policy roadmaps targeting 100 percent electric two-wheeler sales and zero-emission shipping by 2050, actual uptake remains negligible; electric vehicles accounted for only 0.4 percent of imports in 2024.

Safety remains a persistent crisis. The road crash fatality rate stands at 16.6 per 100,000 people, with minors and seniors disproportionately affected. This physical toll has an economic price; the external costs of transport—including accidents, pollution, and congestion—were estimated at \$7 million in 2024.

This archipelago, stretching 1,600 km across the Southwestern Pacific, struggles with a tyranny of distance that limits its economic potential and social cohesion.

Financing Resilience - Climate change is a current liability and not a future threat. The Solomon Islands faces average annual direct losses from natural hazards of \$20.5 million, effectively shrinking GDP by 3 percent each year. Capital that should fuel growth is instead consumed by recovery.

Financial sustainability is equally precarious. Between 2017 and 2020, government capital spending on transport infrastructure plummeted by nearly 80 percent. The sector now relies heavily on Official Development Assistance (ODA), which totaled around \$240 million since 2015, shifting the financial risk from the state to development partners. With a maintenance funding gap of nearly 75 percent, the nation is building assets it cannot afford to keep.

Conclusion - The Solomon Islands must navigate a difficult transition. To support graduation from LDC status, the transport sector requires a pivot from reactive recovery to predictive resilience. This involves three strategic demands: maintaining and climate-proofing existing assets; rebalancing networks to ensure rural access and gender equity; and aligning low-carbon ambitions with the financial and technical realities of the grid. Without a sustainable transformation, the friction of distance will continue to stifle national wealth.

To support graduation from LDC status, the transport sector requires a pivot from reactive recovery to predictive resilience.

Introduction

Geography dictates destiny in the Solomon Islands. With a population of 819,000 dispersed across a fragmented archipelago, the nation faces a critical threshold: graduation from Least Developed Country status in December 2027 (UN, n.d.). The nation consists of 992 volcanic and coral islands stretching 1,600 km across the Southwestern Pacific. Land area equals 28,000 km², and the Exclusive Economic Zone covers 1.6 million km². This is the third-largest archipelago in the South Pacific, with borders that connect Papua New Guinea, Vanuatu, Tuvalu, Nauru, and Micronesia. This scattered structure imposes a tyranny of distance.

Data show a GDP (PPP) of \$2.4 billion and a per capita income of \$2,872, yet 2026 growth forecasts of 3.2 percent (ADB 2025) indicate slow rather than transformative growth. Its economic performance depends heavily on the transport sector. The main sectors—forestry, fisheries, and agriculture—are all transport-dependent. They rely on the efficient transfer of goods from remote production sites to markets. However, high transport costs hinder the National Vision of "Improving the Social and Economic Livelihoods." Infrastructure gaps restrict productive capacity. To shift from reliance on traditional sectors to a more diversified economy, mobility and connectivity are essential. Current trends suggest that without strategic investments to reduce the friction of distance, economic activity will grow, but wealth will not, and at a significant cost.

Thus, the transport strategy must navigate tension. Economic growth demands expanded mobility, but environmental and climate limits impose restraint. Social equity pulls toward universal access; fiscal constraint pulls toward concentrated investment in productive corridors. These contradictions structure every allocation decision. Informed decisions need good data. Thus, the baseline matters.

As the United Nations Decade of Sustainable Transport commences, the Solomon Islands requires a robust and reliable baselines against which future progress can be measured. This assessment provides such. It benchmarks Solomon Islands' transport performance against regional and global standards, utilizing seven interconnected diagnostic lenses: ensuring access to sustainable transport for all; enhancing sustainable connectivity and freight; advancing transport safety and security; shaping people-centered urban mobility; deploying low-carbon, resilient, and environmentally sound transport systems; and leveraging science, technology, and innovation for sustainable transport advancement. Cross-cutting analysis examines the sector's economic contribution, employment dynamics, and gender disparities (Figure 1).

The portrait that emerges is slightly pessimistic. Significant vulnerabilities persist despite limited strides. Institutional capacity exists alongside chronic under-resourcing. The nation has established planning frameworks; execution, including financing, remains a challenge. This is the reality that confronts decision-makers as the Decade unfolds.

Economic growth demands expanded mobility, but environmental and climate limits impose restraint

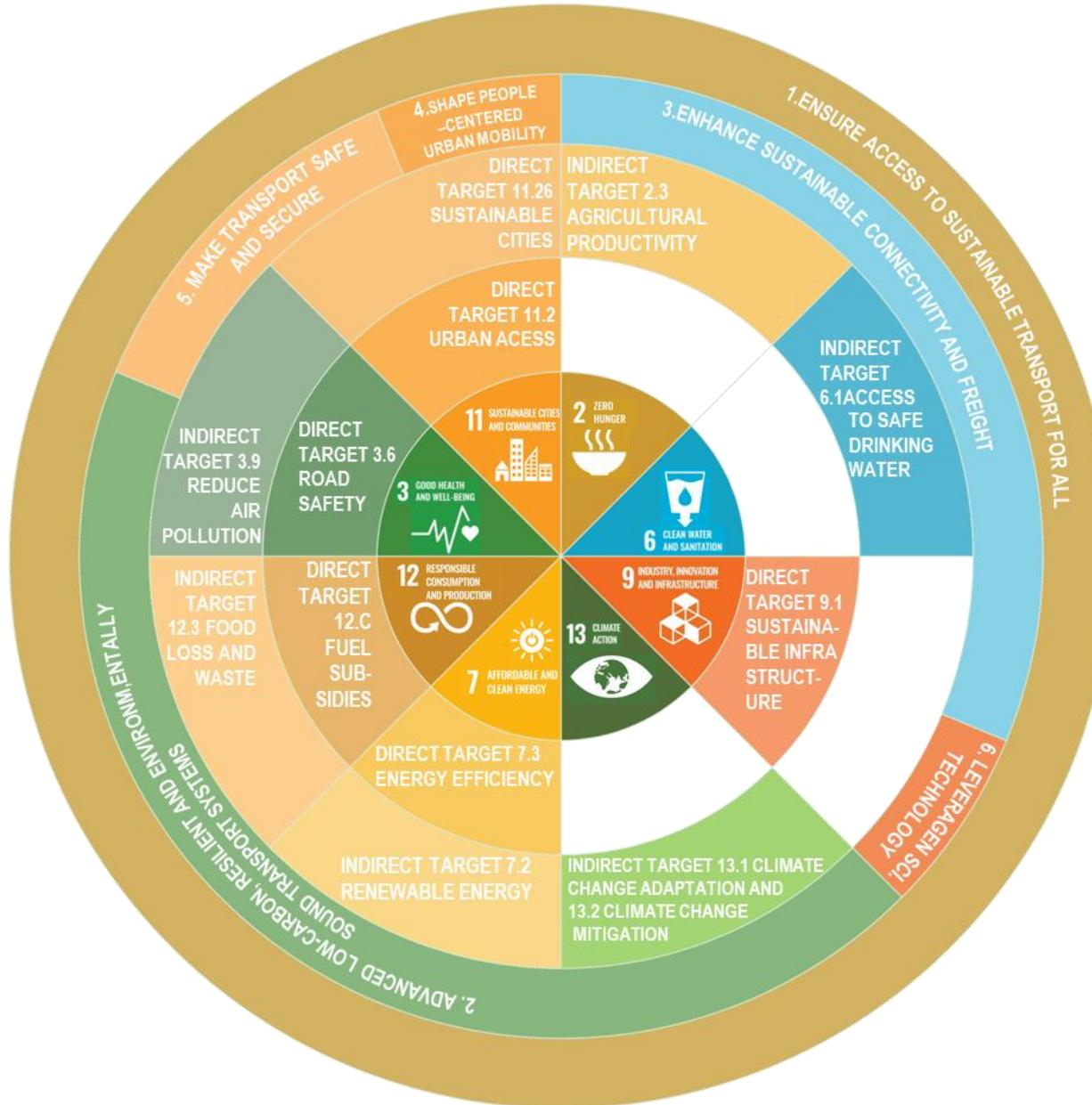


Figure 1. Sustainable Transport Assessment Framework

Source: (ATO 2025a)

Enhance Sustainable Connectivity and Freight

Enhance Sustainable Connectivity and Freight

Quality infrastructure is the foundation of economic and social progress. It directly supports Sustainable Development Goal 9 and impacts the entire 2030 Agenda.

Road Sector

Data indicate a severe inventory gap. Official records list 1,751 km of roads and 188 bridges across 30 islands, yet OpenStreetMap lists about 3,440 km. This divergence suggests a possibility of significant unmonitored infrastructure. Official estimates classify 42 percent of the infrastructure as main roads, 35 percent as feeder roads, and 23 percent as access roads (WB 2020). The Solomon Islands has 4.5 km of road infrastructure per thousand population, compared to some of the other Pacific SIDS with Cook Islands at 28 km, Palau at 23 km and Fiji and 13 km (Figure 2). While, it has a total combined length of roughly 3 kilometers of bridges, about the same as Samoa or Vanuatu, despite having a significantly higher population and land area (Wiedenhofer et al. 2024). Figure 3 below shows the spatial distribution of the road network vis-à-vis the population distribution strongly highlighting the lack of access.

Condition assessments confirm the decline. Of the 1,523 km core network, only 67 percent remains in maintainable condition (ADB 2020). Some estimates indicate that, overall, only about 15 percent of the road network is in fair to good condition. The remainder requires substantial rehabilitation. Various factors, ranging from structural and historical factors to chronic funding deficits, and natural disasters, have contributed towards accelerated infrastructure deterioration. Only 184 km of the main road network (12 percent of the overall network) is paved, with three-quarters of the sealed roads situated in Guadalcanal Province and Honiara City (WB 2020).

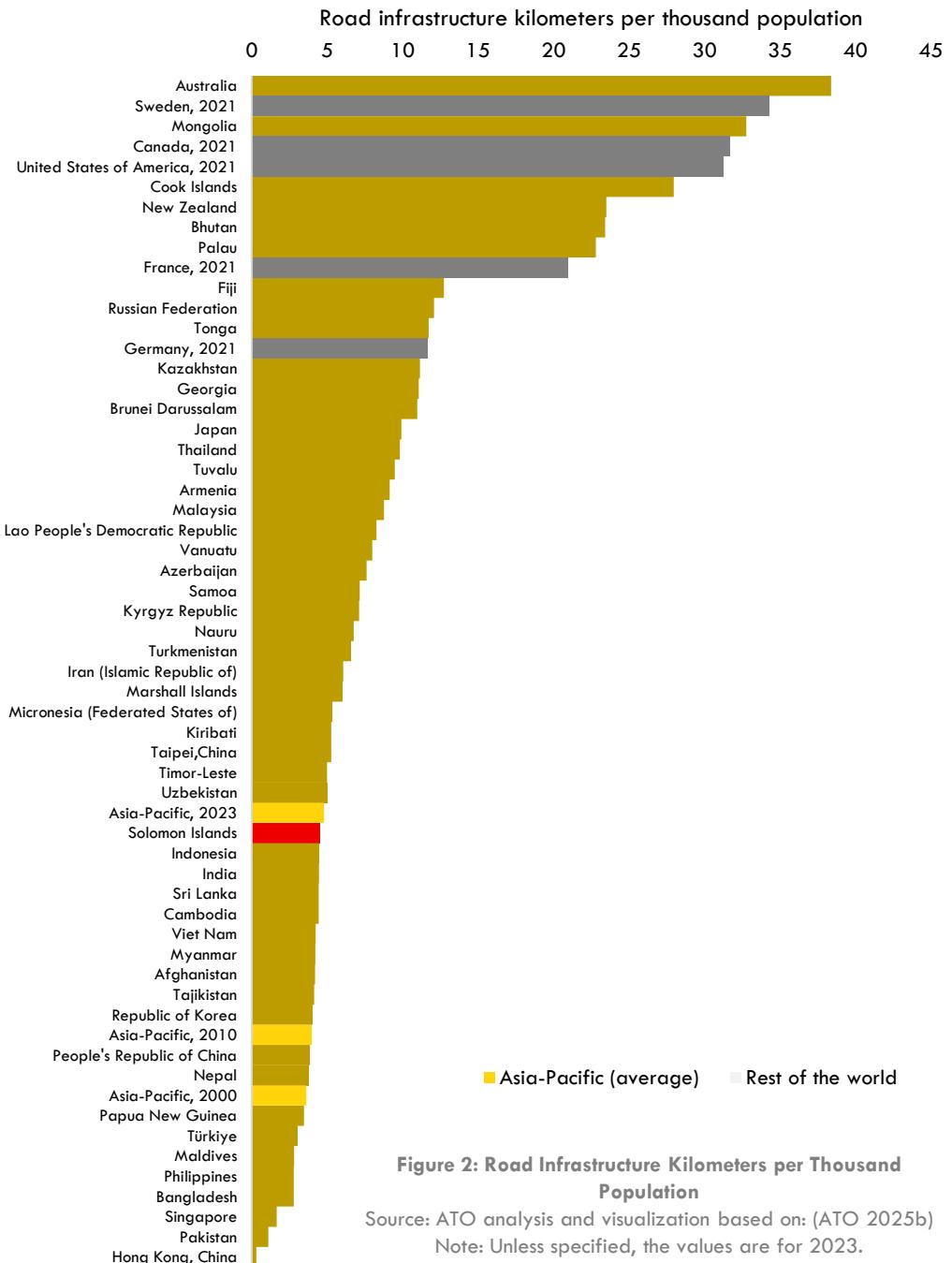


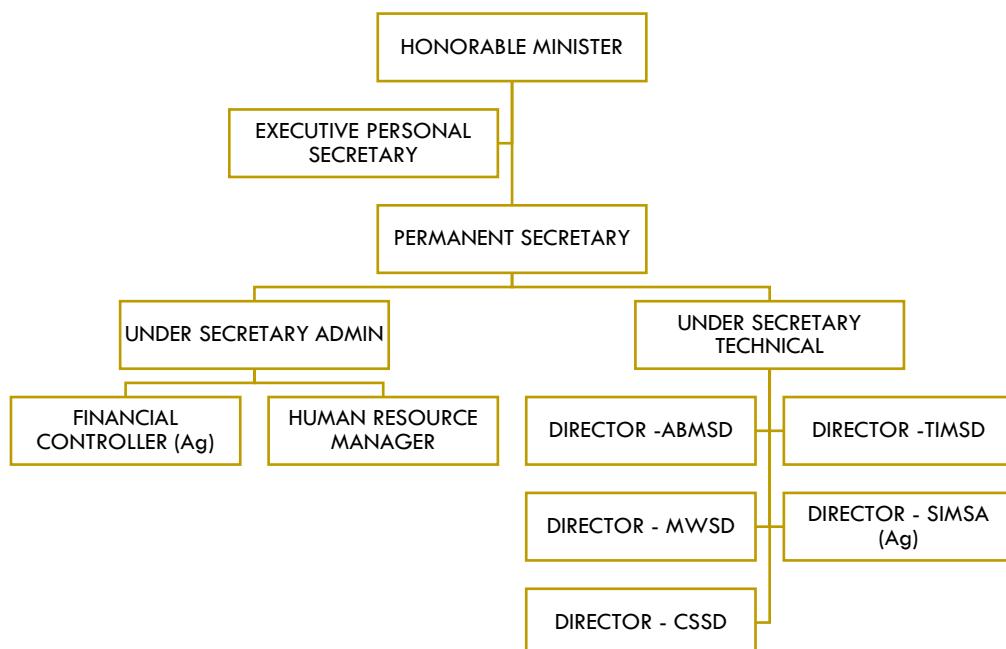
Figure 2: Road Infrastructure Kilometers per Thousand Population

Source: ATO analysis and visualization based on: (ATO 2025b)

Note: Unless specified, the values are for 2023.

Figure 3. Population Estimates (WorldPop) and Strategic Road Network (OSM) – Guadalcanal Island, Solomon Islands

Source: ATO analysis and visualization based on: OSM, WorldPop


An apparent structural disconnection characterizes the network: roads are built, but the necessary bridges are missing. High capital costs have discouraged investments in bridges, leading to broken connectivity. Policies have prioritized population density over resource accessibility. As a result, areas with significant economic potential remain isolated. Although community contracts based on labor are beginning to improve conditions, government programs face delays and insufficient funding. Investments have focused on increasing density but have neglected the choke points (Government of the Solomon Islands 2016b). Without bridges and ongoing maintenance, the network essentially does not function.

Public expenditure on maintenance remains insufficient. At the macro level, in 2019, maintenance spending was estimated at only about 0.8 percent of the total replacement value of public assets—significantly below the internationally accepted benchmark of 2 to 5 percent. This persistent underfunding points to structural challenges in maintaining the long-term integrity and service quality of public infrastructure (WB 2025). Estimates show that from 2022 to 2024, the maintenance budget was just 4 million USD, whereas total needs amounted to about 15 million USD, highlighting a funding gap of nearly 75 percent (WB 2025). Maintenance could save up to 9 percent of GDP over 10 years, yet, public spending remains inadequate (WB 2025).

The Ministry of Infrastructure Development (MID) centrally manages the sector. Its mandate is explicit: deliver safe, reliable, and sustainable systems that conform to government regulations. Institutional structure dictate function. Four technical departments execute the mandate. The Transport Infrastructure Management Services Department controls the financing and manages the National Transport Fund Planning and Audit. It oversees asset management. The Mechanical Works Services Department enforces compliance and manages vehicle fleets. It inspects public and private vehicles for licensing and insurance and tests drivers. Corporate Support Services handles the budget and human capital. Architecture Building Management Services maintain standards. Each department targets a specific operational constraint. (Government of the Solomon Islands, n.d.)

Policy sets the ambition; implementation reveals gaps. The National Development Strategy 2016–2035 (Government of the Solomon Islands 2016a) aimed to increase routine road network maintenance coverage to 90 percent by 2020, but this target has not yet been achieved. The Ministry of Infrastructure Development's Corporate Plan (Government of the Solomon Islands 2025c) seeks to maintain 85 percent of the network through the Solomon Islands Transport Asset Management System (SITAMS), which provides baseline metrics for strategic decisions. Additionally, the Solomon Islands National Transport Plan 2017–2036 (Government of the Solomon Islands 2016b) highlights key connectivity projects, including the Honiara Highway Inner Bypass and the roads in North and South Malaita, as priority investments.

The Solomon Islands Roads and Aviation Project (SIRAP) has improved key transport links along the North Road corridor. It involved reconstructing three bridges—Koa, Bio 1, and Bio 2—and conducting routine maintenance and regravelling on a 38-kilometer stretch from the Auki–Gwaunaru'u Airfield Junction to Baratoro via Dala Market. These efforts also targeted climate-vulnerable sections, enhancing drainage, slope stability, and road safety. The second phase (SIRAP2) will further seal 12 kilometers of North Road between Auki–Gwaunaru'u Airfield Junction and Kwaisuliniu Junction with double bituminous surface treatment, along with reinforced concrete pavement in critical areas to ensure all-weather access. Additionally, SIRAP2 will maintain and upgrade the remaining 21 kilometers of East Road between Baratoro and Atori, strengthening resilience, connectivity, and mobility during the rainy season (Government of the Solomon Islands 2025g).

Figure 4: Organizational Structure

Source: (Government of the Solomon Islands, n.d.)

Notes: TIMSD: Transport Infrastructure Management Service Department; ABMSD: Architecture Building Management Services Department; MWSD: Mechanical Works Services Department; SIMSA: Solomon Islands Maritime Safety Administration; CSSD: Corporate Support Services Department

Aviation

Isolation defines the aviation sector. The data reveals a significant disconnect: UNCTAD rates the Solomon Islands at 70.4 out of 100 for proximity to economic markets, with 100 indicating the highest level of remoteness. For transport connectivity, they score 97 out of 100 based on liner shipping connectivity, flights per capita, and land borders, where 100 signifies minimal access.

Aviation infrastructure is minimal and comprises 28 airports, covering just two sq km of aerodrome area in 2022, i.e. 2.9 sqkm per million population (Figure 5 and Figure 6). Ten airports are government-owned, and eighteen are community-owned. Activity collapsed following the pandemic. Departures fell from 11.1 thousand in 2019 to 5.5 thousand in 2021, i.e. about 7 registered carrier departures per thousand population (Figure 7). This demand shock severed the tourism lifeline; while 100 percent of the 1,000 tourists in 2021 arrived by air, total volume remained 85 percent below the 2019 peak (JICA 2022b).

Figure 5. Aviation Infrastructure and Facilities – Solomon Islands
Source: ATO visualization based on data from (OpenStreetMap contributors 2025)

Isolation defines the aviation sector. The data reveals a significant disconnect: UNCTAD rates the Solomon Islands at 70.4 out of 100 for proximity to economic markets

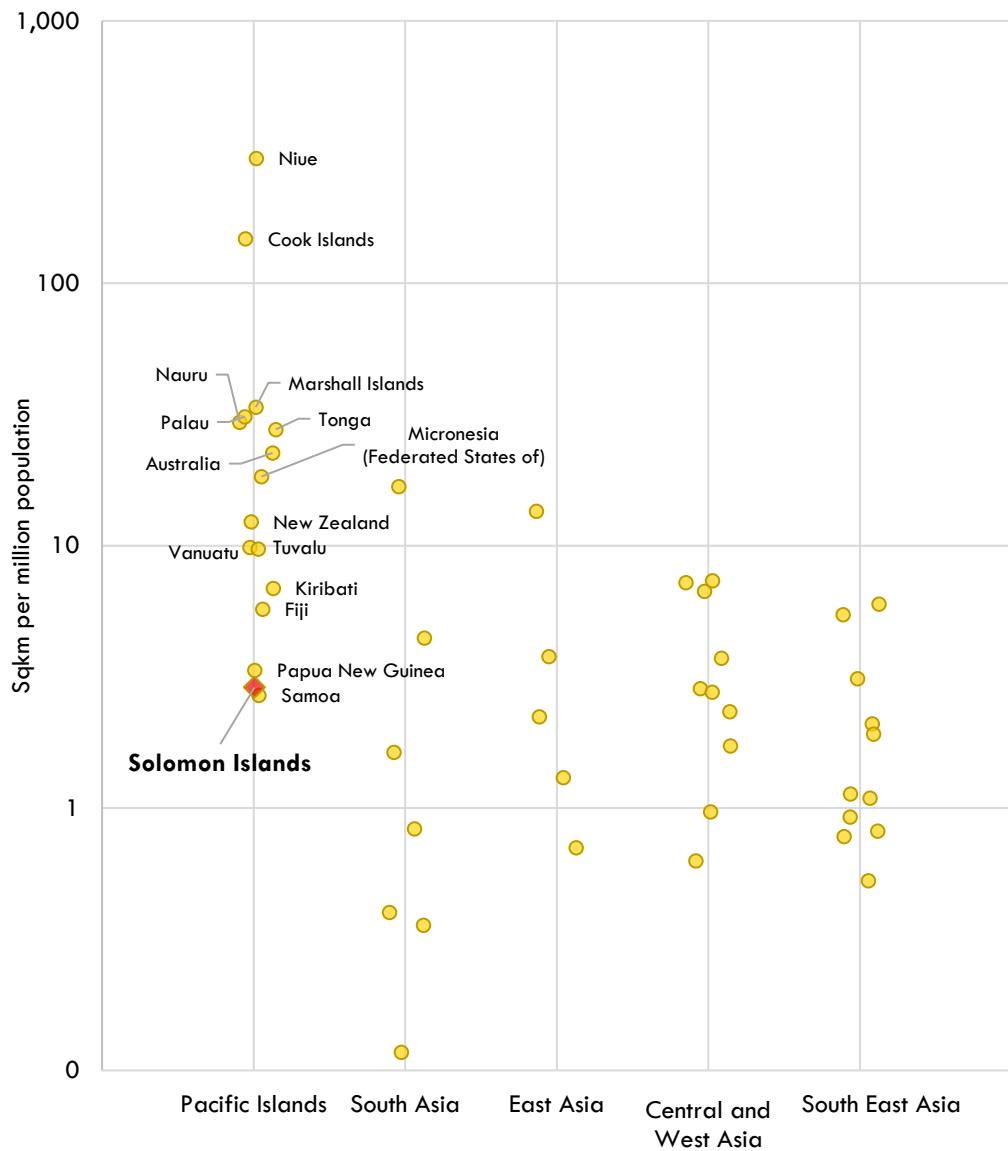


Figure 6: Aerodrome Area per Capita, 2022

Source: ATO analysis and visualization based on: (Nirandjan et al. 2022)

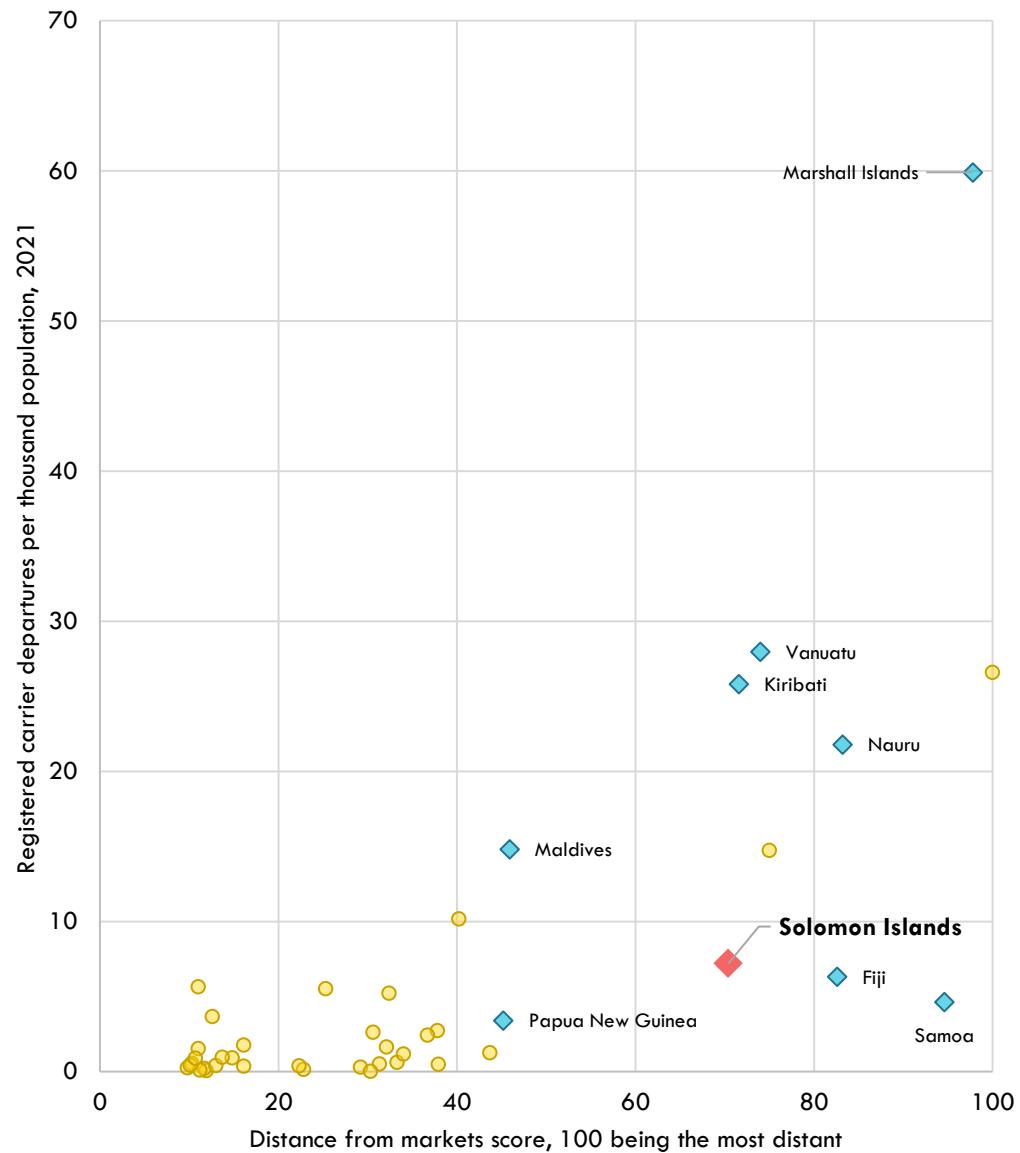


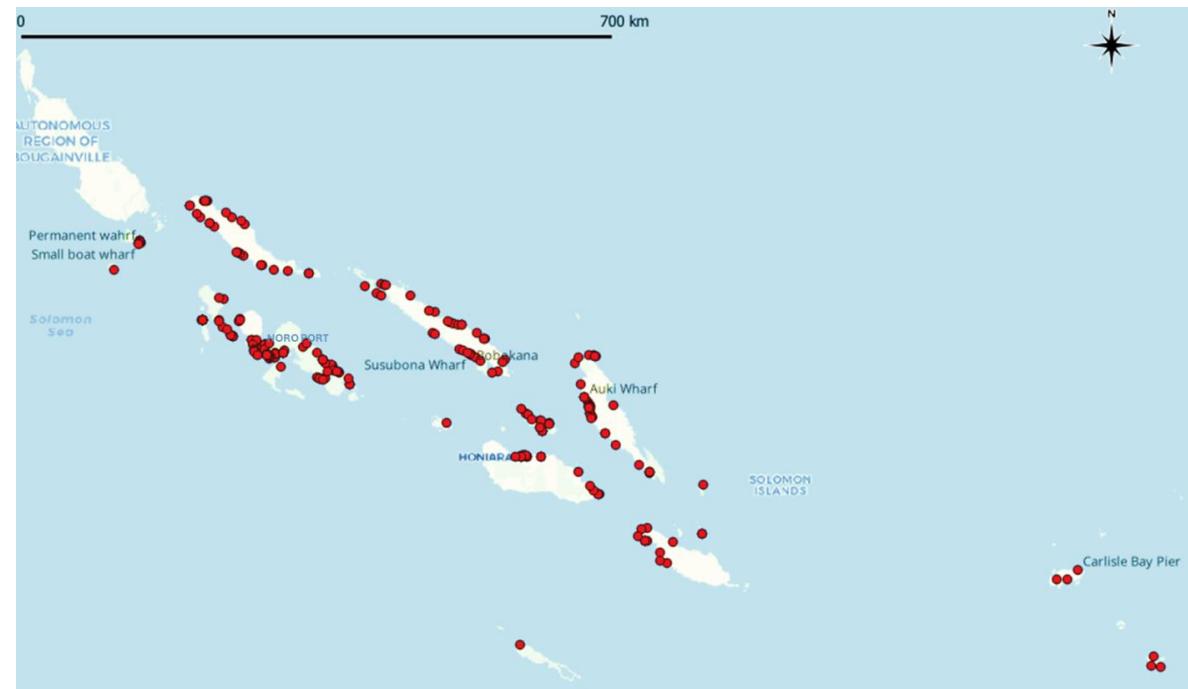
Figure 7: Registered Carrier Departures per Thousand Population, 2021

Source: ATO analysis and visualization based on: (UNCTAD 2021; World Bank 2021)

Contrary to expectations, behavioral trends suggest stagnation. The propensity to travel dropped from 0.31 trips per capita in 2019 to 0.12 in 2024. The demand trails the Pacific Islands' average of 0.59 significantly. Projections indicate a slow recovery. Per capita trip rates will not reach 2019 levels until 2044. However, total volume will rise. Forecasts for 2035 predict a 206 percent increase in passenger activity and a 198 percent increase in freight. Aviation currently moves 7 percent of international passenger-kilometers (PKM) but only 0.2 percent of cargo. It moves people, not much goods. Without structural connectivity changes, the sector remains a bottleneck. (JICA 2022b)

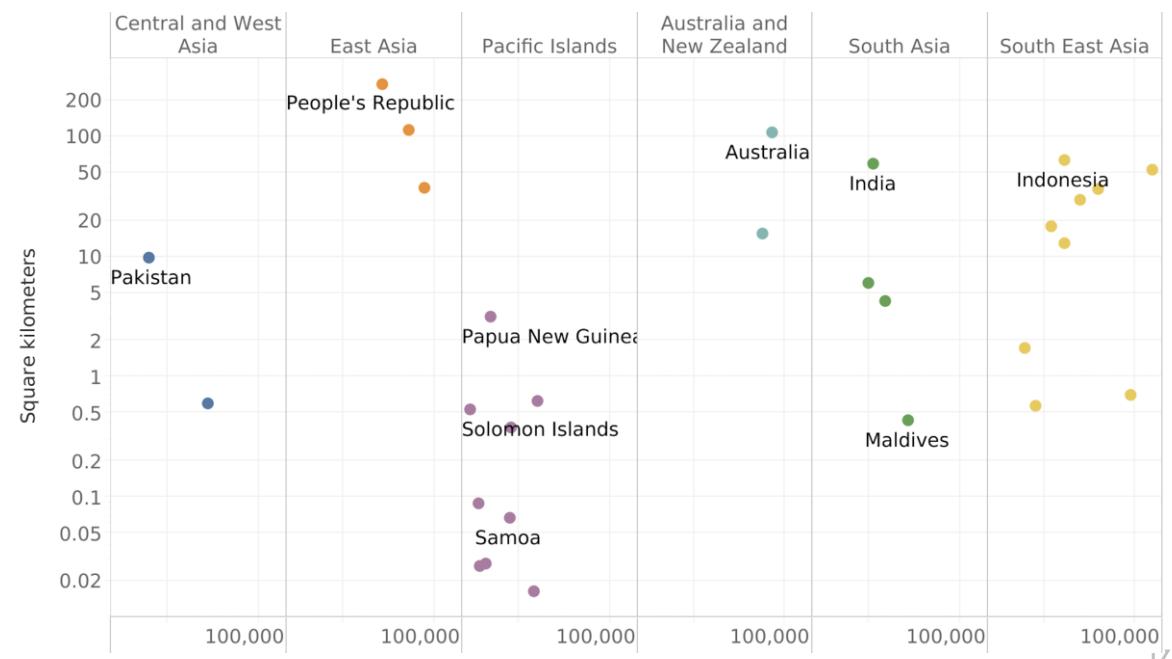
Honiara Airport is the major international gateway, connecting the archipelago to Australia, Fiji, Kiribati, Nauru, and more. It also handles domestic flights to outer islands. Although policies focus on upgrades, the infrastructure was outdated and falling behind. Maintenance was often postponed, leading to severe deterioration of the apron and taxiway. This posed safety hazards, prompting airlines to suspend flights, with immediate economic impacts. The challenging geography worsens the situation; for example, in April 2014, floodwaters submerged the airport, causing a closure. Its vulnerability to natural disasters remained a significant concern (WB 2018). In June 2018, the Japan International Cooperation Agency (JICA) signed a Grant Agreement with SIG for up to US\$39.4 million. The funding aims to upgrade the taxiway, apron, international and domestic terminal buildings, and include flood protection dike (World Bank 2025).

To unlock the economic potential, the New Zealand Ministry of Foreign Affairs funded two phases of improvements to Munda from 2014 to 2018. These upgrades allowed the airport to serve as an alternative emergency facility for Honiara. Building a second international airport also helps mitigate risks associated with the country's geographical location isolation.


Policy guides infrastructure development. The 2019–2023 Medium-Term Transport Action Plan (Government of the Solomon Islands 2018) mandates the rehabilitation of Honiara International Airport, explicitly requiring a new international terminal and expanded apron capacity. Strategic focus is given to provincial connectivity. Ensuring operational viability relies on professionalization. The Solomon Islands National Transport Plan 2017–2036 (Government of the Solomon Islands 2016b) emphasizes paving, upgrading, and fencing provincial airstrips before the involvement of state-owned enterprises handover.

The National Development Strategy (Government of the Solomon Islands 2016a) mandates the establishment of a Quality Management System (QMS) for aviation weather services to meet International Civil Aviation Organisation (ICAO) requirements. Operational strategies focus on minimizing delay. The plan directs airlines and air navigation service providers to streamline operations through improved Air Traffic Management systems and predictive analytics. Infrastructure upgrades support these efficiency improvements.

Per capita trip rates will not reach 2019 levels until 2044. However, total volume will rise.


Maritime Transport

The nation relies entirely on interisland transfers for domestic trade. The country comprises nine provinces across six major islands and over 900 smaller ones, dispersed across an exclusive economic zone of approximately 1,340,000 km². Infrastructure is concentrated. The network consists of two international ports—Honiara and Noro—with about 90 community jetties and boat ramps (Figure 8). In 2024, Solomon Islands had about 0.5 km² of total port area across the nation (Figure 9). By 2035, modelled estimates indicate that a much larger area will be required to accommodate increased activity and cargo space. The required area could be almost double or 0.8 sq2 (Hanson and Nicholls 2020).

Figure 8. Maritime Transport Infrastructure and Facilities — Solomon Islands

Source: ATO visualization based on data from (OpenStreetMap contributors 2025)

Figure 9: Port Area in 2024 (X-axis is GDP per Capita in USD)

Source: ATO analysis and visualization based on: (ATO 2025b)

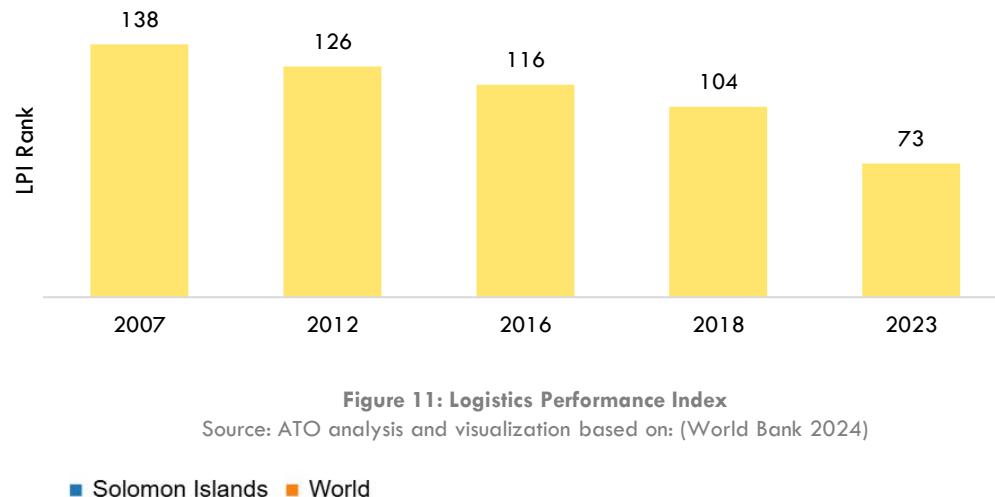
Data show that the Liner Shipping Connectivity Index (LSCI) (UNCTAD 2025) for the Solomon Islands dropped from 36 in 2013 to approximately 30 in 2023 (Figure 10). This measure breaks down the mechanics of global integration into six physical components: scheduled ship calls, deployed annual capacity, and the number of regular services. It monitors the diversity of shipping companies, the average vessel size, and the number of direct national connections. The decline indicates a structural contraction across these factors. Therefore, the archipelago has become less connected to the global container network, increasing trade friction.

The Solomon Islands Ports Authority (SIPA) designates Honiara for international cargo, while fish transshipment has been diverted to Noro. Volumes have risen over time. Recovery following the 2003 ethnic tensions and 2021 riots, alongside population growth, drove increases in cargo handling. However, physical constraints choke Honiara. Located on a peninsula within the CBD, the port faces limited land-reclamation options and a single access road that exacerbates urban congestion. Private investment in alternative sites now threatens the government monopoly.

Fleet condition is critical, as the average age of domestic vessels is 29 years (WB 2023). Operators purchase end-of-life vessels, resulting in high operating costs and deferred maintenance. Consequently, many vessels operate outside accepted safety limits, increasing the risk to reliability, efficiency and greenhouse gas emissions.

The Ministry of Infrastructure Development manages physical assets. SIPA, a state-owned enterprise, operates the major ports, while the Solomon Islands Maritime Authority (SIMA) enforces safety and coordinates search and rescue. Data collection is modernizing; the adoption of the Automated System for Customs Data (ASYCUDA) aims to capture freight costs and origin data.

Figure 10: Liner Shipping Connectivity Index, 2006-2024
Source: ATO analysis and visualization based on: (UNCTAD 2024)


Logistics Performance Challenges

Logistics performance is the synthesis of infrastructure, connectivity, and policy. Metrics like the World Bank's Logistics Performance Index (LPI) (World Bank 2024) assess dimensions including customs efficiency, infrastructure quality, ease of arranging shipments, logistics competence, tracking, and timeliness. Solomon Islands' LPI history shows gradual improvement from a low base. Ranked 138th in 2007, it improved to 126th in 2012, then to 116th in 2016 and 104th in 2018 (World Bank 2024). By 2023, the LPI rank had improved to 73 (World Bank 2024) (Figure 11).

UNCTAD's Sustainable Freight Transport (SFT) index (UNCTAD, n.d.) provides another benchmark, measuring performance across ~160 economies. Scores range from 0 (lowest worldwide) to 100 (highest). Solomon Islands' ranks 108th overall. (UNCTAD, n.d.) (Figure 12).

Government intervention is crucial to correct market deficiencies. The Solomon Islands National Transport Plan 2017-2036 (Government of the Solomon Islands 2016b) calls for assessing the needs for domestic container sea freight infrastructure. It recommends building new domestic and international seaports at Kirakira, Wairokai, and Lata. Regular shipping services are essential for trade and for providing island provinces with access at least once a month by 2030.

Market deficiencies necessitate targeted interventions. The Ministry of Infrastructure Development (Government of the Solomon Islands 2025c) administers the Franchise Shipping Scheme to maintain coverage for economically unviable routes. The Medium-Term Transport Action Plan 2019–2023 (Government of the Solomon Islands 2018) targets upgrades to Honiara International Port and the rehabilitation of Noro International Port. Future growth depends on targeted investment; the Solomon Islands Priority Infrastructure Investment Pipeline (Government of the Solomon Islands 2021c) designates Bina Harbor Port as a key national transport project. Expanding the road network to connect inland communities with maritime routes requires complementary development.

■ Solomon Islands ■ World

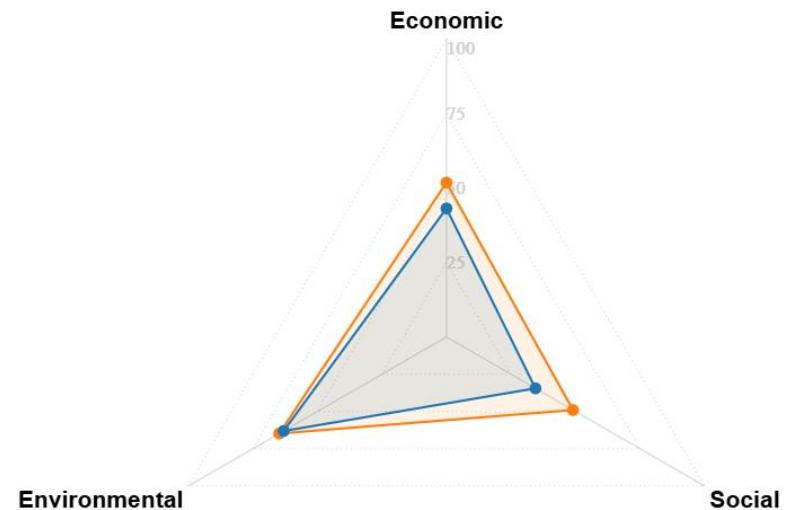
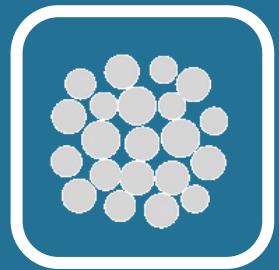



Figure 12: UNCTAD's Sustainable Freight Transport (SFT) Index
Source: ATO analysis and visualization based on: (UNCTAD, n.d.)

**Ensure Access to Sustainable
Transport for All**

Ensure Access to Sustainable Transport for All

Access to transport unlocks access to opportunity. In cities, good transport access results in shorter, safer commutes and boosts local economies. In rural areas, it reduces isolation by linking communities to markets, schools, and vital services. Whether urban or rural, this access is essential for sustainable transport.

Rural Access

Three out of four people live in rural areas. UN projections (UN-DESA, n.d.) indicate the rural population will remain dominant through 2050, i.e., about 60 percent of the total population. Comprehensive rural access remains a challenge. In 1999, household surveys had indicated a rural access index of 77 percent (Sum4all 2022). However, by geospatial analysis, the estimated Rural Access Index¹ (RAI) in 2022 stands at 52 percent (SDSN, n.d.) (Figure 13). This is equivalent to 240,000 Solomon rural population without access to all-weather roads.

Data show that two-thirds of the road network is situated on Guadalcanal and Malaita, with only 126 km sealed, mainly around Honiara and Auki. The rest is composed of gravel, coral, or earth. Infrastructure in Malaita highlights the infrastructure disparity: despite hosting 27 percent of the country's population, its paved ratio is only 4 percent, compared to 20 percent for Guadalcanal and 33 percent for the Capital Territory.

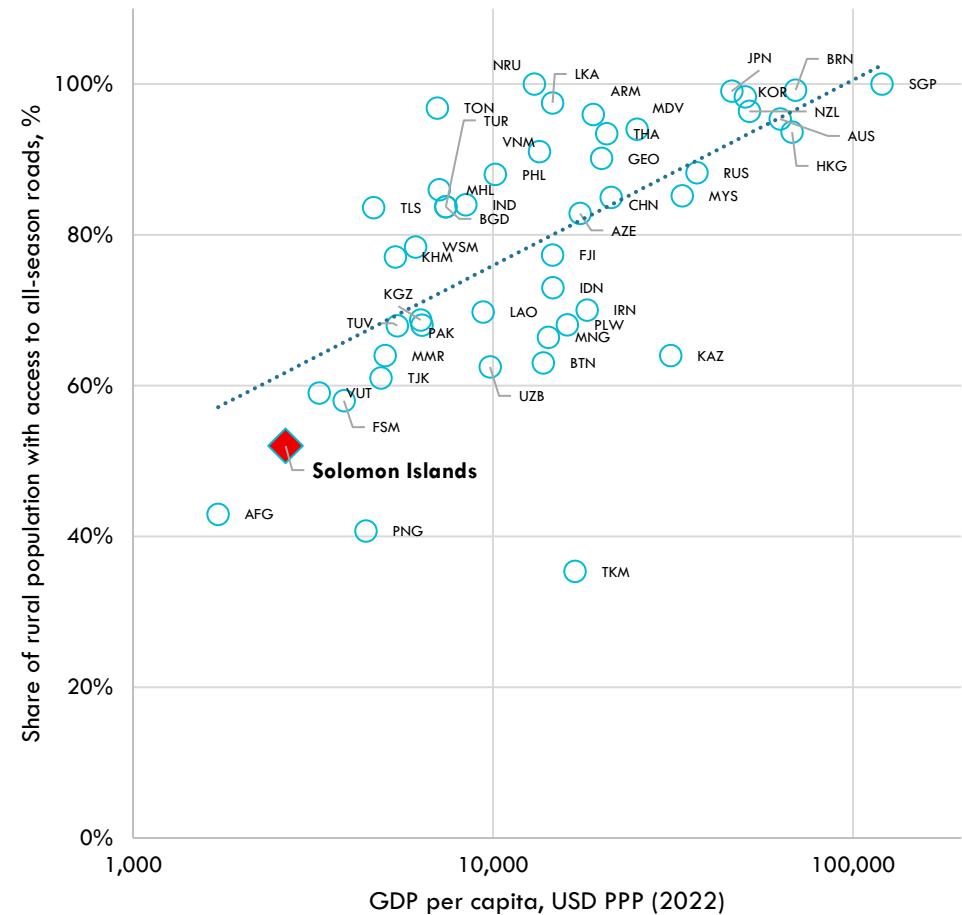


Figure 13. Rural Access Index vs. GDP per Capita (2022)

Source: ATO analysis and visualization based on: (Center for International Earth Science Information Network 2023; SDSN 2025; World Bank 2023)

¹ The Rural Access Index (RAI) measures the proportion of the rural population within 2 km of an all-season road

Urban and National Access

SDG Target 11.2 aims for safe, affordable, and sustainable transport by 2030, with a focus on vulnerable populations. Measurement relies on Indicator 11.2.1, which measures the share of the population with easy access to public transport.

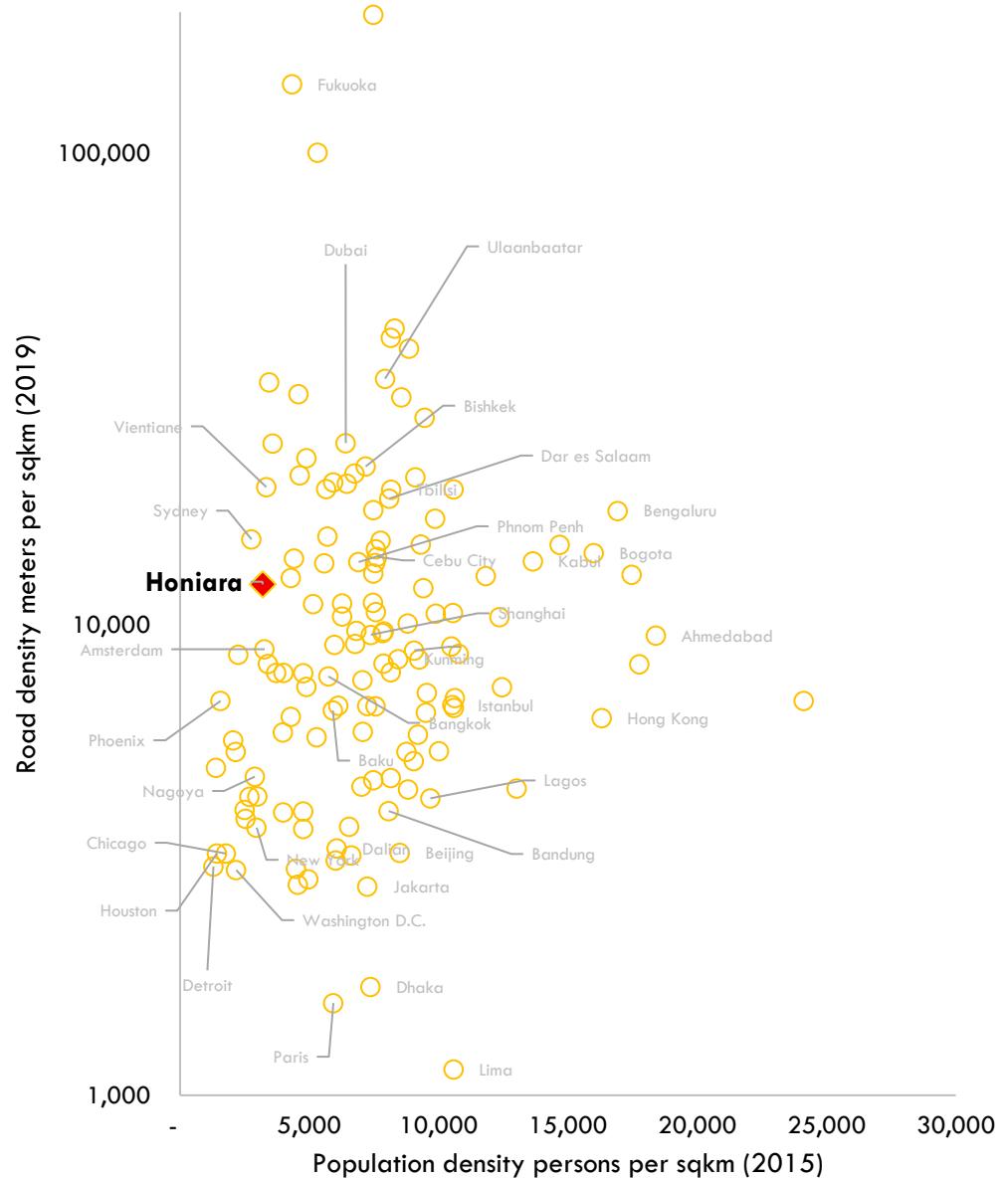
- UN-Habitat estimates that only 7 percent of the population has convenient access, based on a spatial definition (UN-Habitat 2024). It considers residents within 500 meters of a low-capacity transit system. However, data quality limits this conclusion: only mapped stops are included, while informal systems common in developing cities are largely unmapped, suggesting actual access may be higher. Additionally, boundary definitions vary: estimates use Urban Extent rather than municipal borders, which can alter the area analyzed relative to official boundaries. Thus, infrastructure gaps hinder this assessment. Solomon Islands has no rapid transit system, making it challenging to delineate urban access further.
- The alternate assessment by the Center for International Earth Science Information Network (CIESIN) (CIESIN 2023) estimates that only about 4 percent of the population has easy access to public transport.

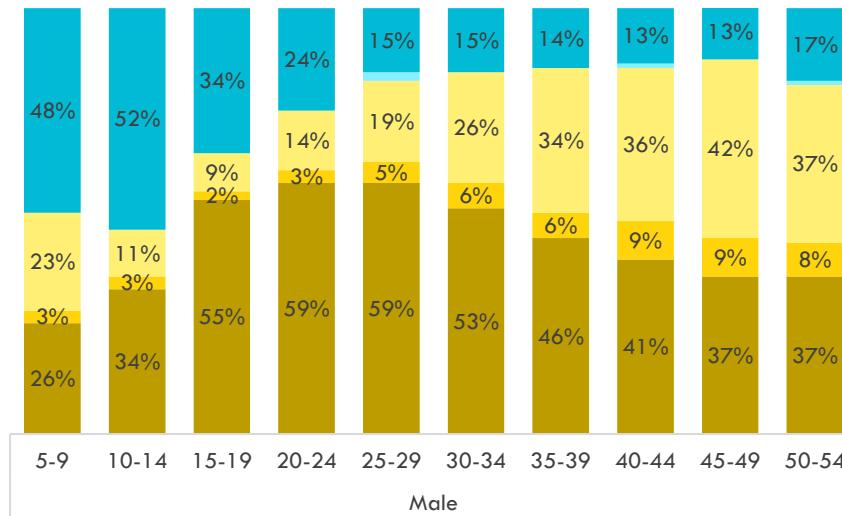
Honiara operates as the singular node in the national hub-and-spoke system. The port at Point Cruz controls 90 percent of international freight movements, excluding logging. Infrastructure concentrates physical flow; 12 domestic jetties adjacent to the international facility service the entire inter-island network. Demographics track this connectivity. The Honiara Urban Area absorbed close to 50 percent of inter-provincial migration between 2014 and 2019. Urban growth is asymmetric and clustered.

If we consider accessibility based on travel time, only about 21 percent of the total population can reach the nearest urban center in 3 hours (Weiss et al. 2020). Here, the urban center is defined as a contiguous area with 1,500 or more inhabitants per square kilometer, or as most of the built-up land cover coincident with a population center of at least 50,000 inhabitants.

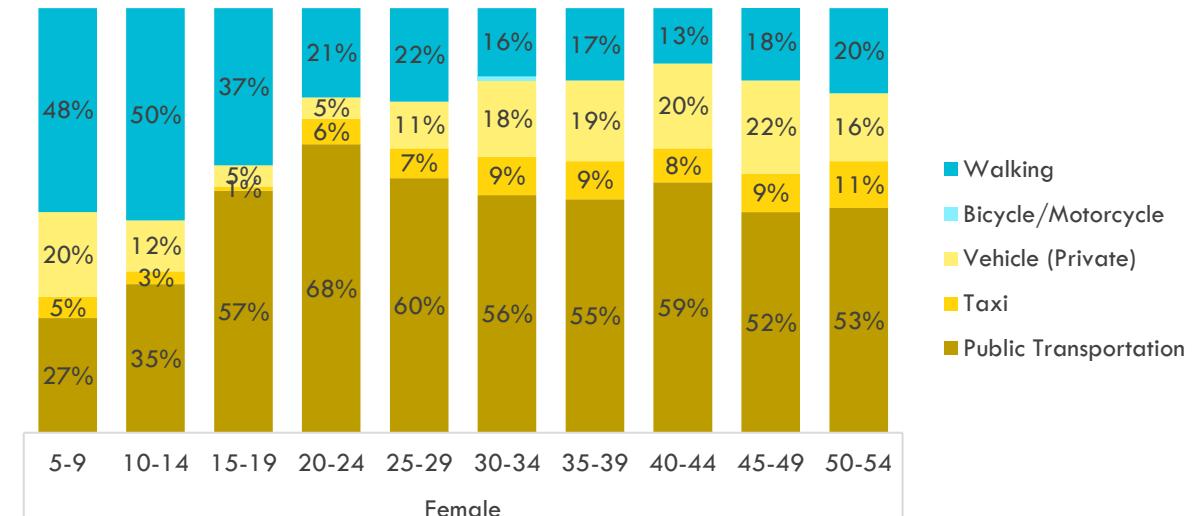
Linear regression analysis of the 2019 census reveals a transport structural gap. In wards with good access and connectivity, participation in wage income or cash agriculture among the population aged 12+ was 5 percent higher than in poorly connected counterparts —this metric proxies economic activity. The divergence was statistically significant, indicating that access and connectivity are the foundation of economic growth. Data show that 114 out of 183 wards have poor national transport access and connectivity, impacting over 40 percent of the population. The inter-island shipping network does not serve peripheral areas; Temotu, Rennell and Bellona, and the Shortland Islands are essentially isolated. Geographic factors limit weather-dependent coastal services on Guadalcanal and Makira to monthly schedules at best. Locally, access remains limited, as communities on the main islands find it difficult to reach the nearest transport hubs. (WB 2024)

The National Development Strategy 2016–2035 (Government of the Solomon Islands 2016a) explicitly prioritizes road network expansion to enhance access for inland communities seeking connection with coastal roads and maritime networks. The mandate carries numerical precision: by 2020, at least 30 percent of rural Solomon Islanders must access essential services through rehabilitated infrastructure. By 2035, at least 40 percent should benefit from direct access to critical services via rehabilitated and newly constructed roads, bridges, and wharves. Maritime connectivity requires systematic provision. Island provinces must achieve shipping service access at a minimum monthly frequency—a substantial improvement from the 2008 baseline of once every six months. Aviation supports this network tier. The Strategy directs assessment of runway capacity extension at both provincial and international airports, ensuring island provinces obtain basic economic mobility infrastructure.


Shape People Centric Urban Mobility



Shape People Centric Urban Mobility

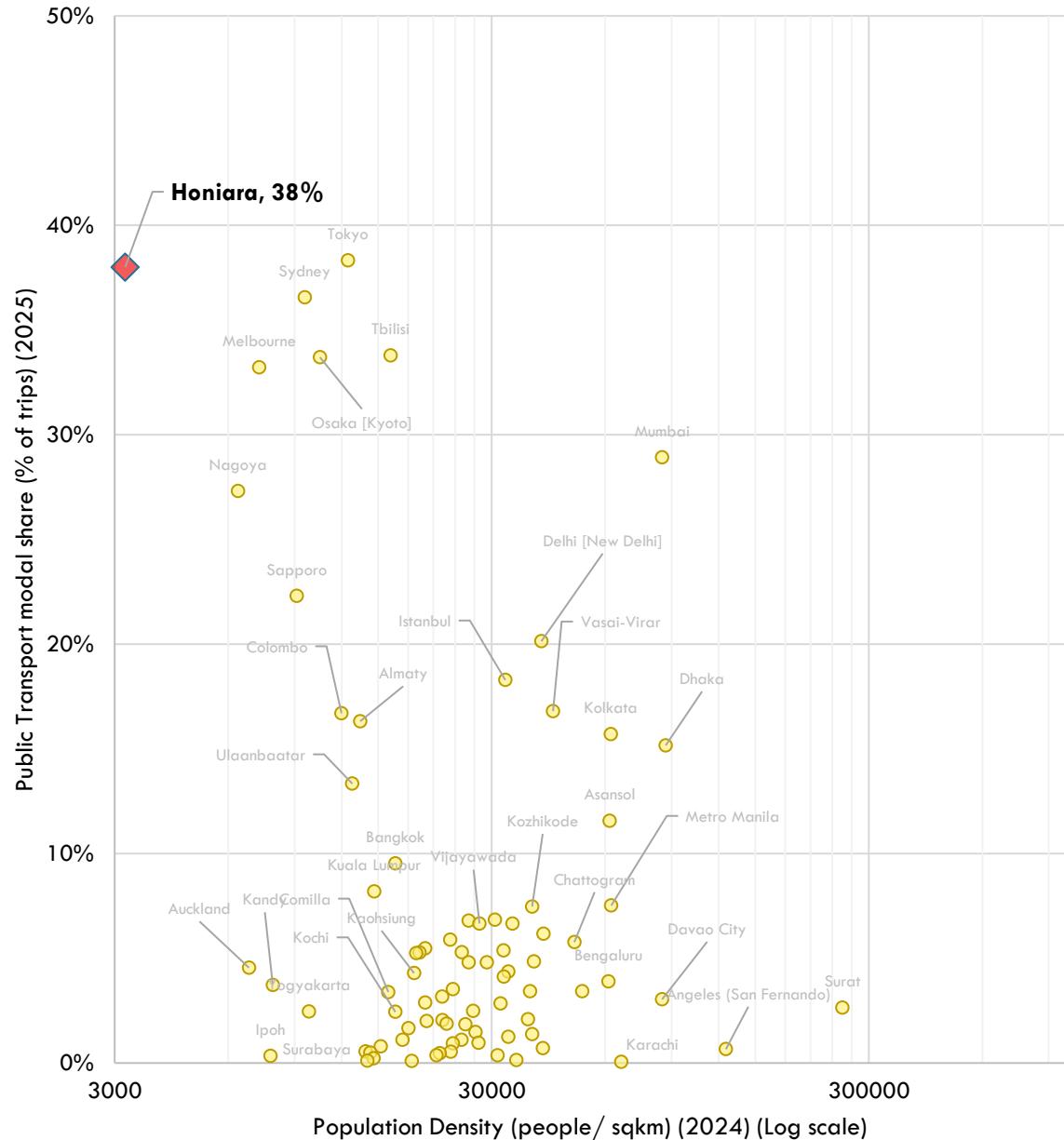

Honiara's population increased from approximately 34,000 in 1990 to 85,000 in 2023. The population in the greater Honiara urban area is estimated to be about 100,000 in 2015 (about 15 percent of the total population) and is expected to reach 200,000 by 2030. The current population density is about 3,200 people per sq km. The road length in Honiara, is about 280 km (Climate Trace 2025), i.e. about 12 km per km² (Figure 14). The master plan categorizes the Honiara City network into three tiers totaling 172 km. Primary arterials constitute 40 km. Secondary branch roads add 44 km. Tertiary connection roads account for 88 km of the inventory. Household surveys indicate that the average number of trips per person across the total population is about 2.5 for males and 2.0 for females.

Public facilities are concentrated within 1.5 km of the center, with most major developments occurring within a 5 km radius of the CBD. As a result, travel in the Greater Honiara Area is primarily short distance. The eastern connection to Honiara Airport is just 10 km long. Mobility is controlled by private operators, who mainly use minibuses and sedan taxis. This operational pattern leads to congestion, especially as vehicles gather at the central market, clogging the network and adding to daily highway traffic. Estimates indicate that vehicle activity in Honiara city was about 235 million vehicle-kilometers in 2022 (Climate Trace 2025). The household surveys conducted in 2019 revealed that the highest modal share among GHA citizens aged 15 and older is public transport for both males and females. Walking remains high, especially among males and females aged 5 to 14 years. Overall, walking accounts for about 19 percent of total trips (Figure 15, Figure 16) (JICA 2022a).

Figure 15: Transport Mode Share in Honiara City (Categorized by Age) – Male
Source: ATO analysis and visualization based on: (JICA 2022a)

Figure 16: Transport Mode Share in Honiara City (Categorized by Age) – Female
Source: ATO analysis and visualization based on: (JICA 2022a)

Public transport mode share in Greater Honiara was about 38 percent in 2019 (Figure 17), yet it operates without a schedule. The system relies entirely on the private sector, dominated by second-hand, 15-seater minibuses. It is a market of high frequency but low reliability. In 2019, the number of registered buses was estimated at 1193 in Honiara city and about 534 in Guadalcanal province (JICA 2022b). At present, private bus operators predominantly use 15-seater light vans to operate bus services. Most operators (77 percent) own just one bus, operated by a single driver-conductor.


Public transport system in Greater Honiara relies entirely on the private sector, dominated by second-hand, 15-seater minibuses.

Fleet composition shows reliance on imports, mainly second-hand vehicles from Japanese markets. Annual growth has reached 520 vehicles, up 6.8 percent. The registered stock increased by 3,100 units between 2012 and 2018. Projections indicate that total trip production will grow by 1.78 times from 2019 to 2036. The population increases by 48 percent, which is a stark contrast to the expected 192 percent rise in registered cars during this period. (JICA 2022b)

Spatial concentration persists; trip concentration continues in central areas. Structural shifts increasingly favor private ownership, reducing bus modal share from 38 percent in 2019 (Figure 17) to an estimated 31 percent by 2036. Total vehicle trips in Greater Honiara could double by 2036 relative to 2019 (JICA 2022b).

The Greater Honiara Transport Master Plan Study (GHTMPS) (JICA 2022b) highlights that the immediate priority is breaking the city's critical dependency on a single coastal artery by constructing a "2nd East-West Corridor" and a third Mataniko Bridge, a structural intervention essential for both daily mobility and disaster resilience against riverine flooding. Concurrently, the GHTMPS proposes a fundamental restructuring of the public transport sector, recommending a transition from the fragmented, individual owner-operator minibus model to a consolidated "trunk-and-feeder" system utilizing higher-capacity vehicles and designated terminals under the oversight of a new Public Transport Authority.

Complementing these infrastructure goals, the Policy Roadmap for E-mobility in the Solomon Islands (Government of the Solomon Islands 2022) recommends specific sales targets for electric vehicles and the establishment of an "E-bus system in Honiara in 2035," supported by the mandatory installation of "EV charging infrastructure" in urban spaces.

Figure 17: Public Transport Modal Share
Source: ATO analysis and visualization based on using (CIESIN 2023; ITDP 2024) data

The Solomon Islands government and JICA have launched the "Capacity Improvement of Urban Transport Management in Honiara" project (Government of the Solomon Islands 2025b). The goal is to create a safer, more reliable, and more sustainable public bus system while enhancing overall traffic management. The project includes structured policy development, clearer roles and standards for bus operators, national standards for traffic signs and markings, and better public parking management. It aims to shift towards collective transport, cut unnecessary vehicle kilometers, and reduce both the oil import costs and greenhouse gas emissions over time. This joint effort involves the Ministry of Infrastructure Development, Honiara City Council, the Guadalcanal Provincial Government, the Road Transport Board, and the Royal Solomon Islands Police Force. It marks an essential step toward energy-efficient, resilient urban mobility in Pacific nations that are highly vulnerable to climate change.

Increasing Street Sprawl

Urban accessibility depends heavily on the type of road network. "Street sprawl"—road expansions characterized by dead ends and long distances between intersections—undermines connectivity. The Street-Network Disconnectedness Index (SNDi) measures this comparatively across urban areas, evaluating connectivity based on nodal degree, dead ends, circuity, and sinuosity (Barrington-Leigh and Millard-Ball 2025). A higher SNDi signifies greater sprawl and less connectivity.

Globally, a trend toward reduced street disconnection began after the early 2010s, with an average annual change of -3.3 percent. The Asia-Pacific region lags with an annual change of -1.5 percent. Alarmingly, cities in low-income Asian economies buck this trend, experiencing a 5 percent yearly increase in dysconnectivity. The Solomon Islands reflects these regional challenges; its SNDi score was 7.9 in 2020, making it the country with the highest sprawl index within Asia Pacific, indicating a high network with low street connectivity and low intersection density (Barrington-Leigh and Millard-Ball 2025) (Figure 18).

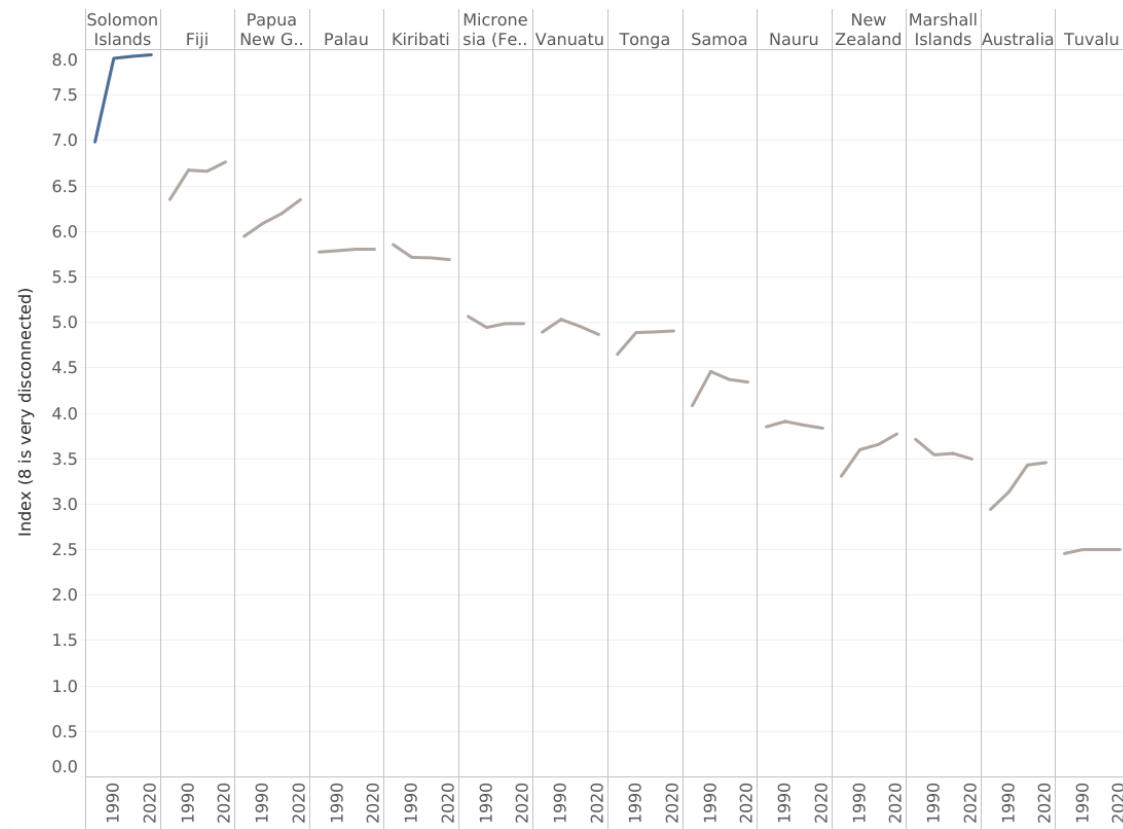
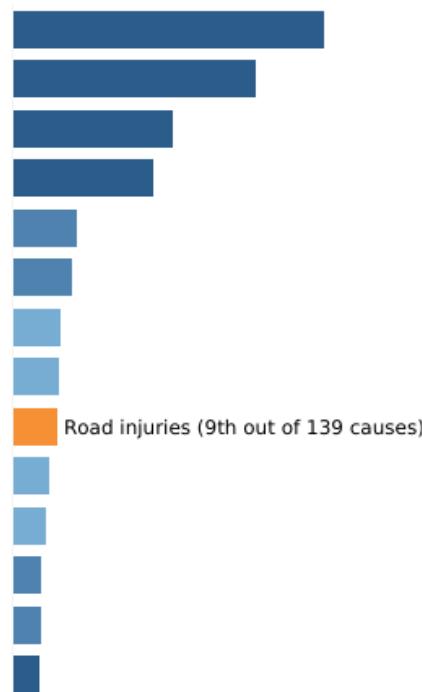


Figure 18: Street Network Disconnectedness Index

Source: ATO analysis and visualization based on: (Barrington-Leigh and Millard-Ball 2025)


Make Transport Safe And Secure

Make Transport Safe And Secure

Road Crashes: A Persistent Public Safety Challenge

Road safety in the Solomon Islands is a complex issue that requires a comprehensive approach to tackle the trends in fatalities and injuries. The estimated road crash fatality rate stands at 16.6 per 100,000 people. The proportion of female fatalities from road crashes saw a slight increase from 23 percent to 24 percent between 2010 and 2021 (making it the 9th mortality causes in the list of 139, Figure 19), aligning with the Asia-Pacific regional average. Alarmingly, the combined percentage of fatalities involving minors (under 14) and seniors (over 65) remained constant at 10 percent from 2015 to 2019.

Figure 19: Causes of Mortalities in Solomon Islands (2021)

Source: ATO analysis and visualization
based on: (IHME 2021)

While the country has made some strides in policy development and institutional strengthening, significant gaps remain in data collection, targeted interventions, and comprehensive implementation.

To achieve the National Development Strategy 2016-2035 (Government of the Solomon Islands 2016a) objective of reinforcing traffic rules and enhancing the safety of public transportation, the Solomon Islands must transition from fragmented enforcement to a holistic "Safe System" approach that integrates robust governance with resilient infrastructure.

Policy priorities identified in the Ministry of Infrastructure Development Corporate Plan (Government of the Solomon Islands 2025c) necessitate amending outdated legislation, such as the Traffic Act 1996 (Government of the Solomon Islands 1996), and institutionalizing vehicle inspections—mandated annually for private vehicles and quarterly for public transport—to eliminate the prevalence of sub-standard vehicles, which are identified as a primary cause of accidents. Complementing this regulatory framework, the Solomon Islands National Transport Plan 2017-2036 (Government of the Solomon Islands 2016b) and the GHTMPS (JICA 2022a) emphasize the urgent deployment of "gender-responsive" and physical safety infrastructure, specifically recommending the installation of streetlights on main feeder roads, guardrails on steep hillside sections, and engineered pedestrian crossings at high-volume nodes.

Crucially, the GHTMPS (JICA 2022a) highlights that physical upgrades must be underpinned by data-driven decision-making; this requires upgrading the traffic accident reporting system to identify "black spots" and establishing a driver's license renewal system that links tenure to traffic violations. Ultimately, these technical interventions should be paired with human-centric recommendations, such as strategic safety awareness campaigns for schools and the formalization of bus operations management, to ensure the transport network protects its most vulnerable users amid rapid urbanization.

**Advance low-carbon, resilient,
and environmentally sound
transport systems**

Advance low-carbon, resilient, and environmentally sound transport systems

Transport Energy and Carbon Emissions

“Solomon Islands aims to maintain net zero emissions across all sectors by 2050 with equitable economic growth and resilience” - The Solomon Islands Long-Term Low Emissions Development Strategy (LEDS) (Government of the Solomon Islands 2023c)

Solomon Islands' transport energy consumption has grown rapidly from 1990 to 2010. The sector's energy demand grew at an annual growth of 4.5 percent, increasing from 1,306 terajoules in 1990 to 3,137 terajoules in 2010 (United Nations Statistics Division, 2024). Land transport currently consumes nearly 60 million liters of diesel and 40 million liters of petrol annually (Government of the Solomon Islands 2023c).

Since 2010, energy consumption has decreased by an average of 1.9 percent annually. The road sector accounts for approximately 85 percent of transport energy use, while domestic shipping accounts for 13 percent (Figure 20). In 2022, transport accounted for 38 percent of Solomon Islands' total energy consumption, underscoring its vital economic role. That year, all transport energy was derived from oil products, indicating complete dependence on imported fossil fuels.

The primary cause of high energy use in road transport is that the entire fleet, totaling about 7,600 vehicles, consists of second-hand, less fuel-efficient internal combustion engine vehicles (Government of the Solomon Islands 2025d) (Figure 21).

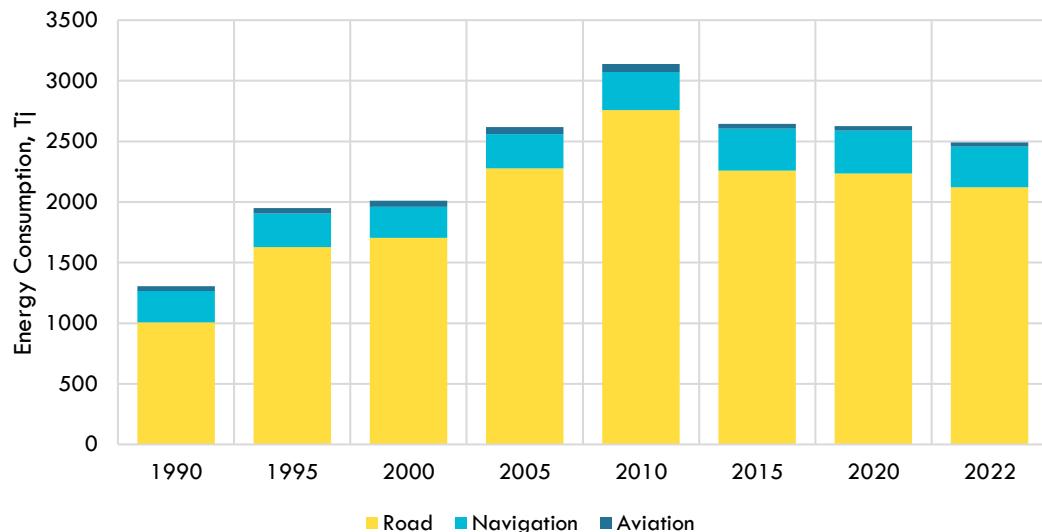


Figure 20: Transport Energy Consumption

Source: ATO analysis and visualization based on: (United Nations Statistics Division 2024)

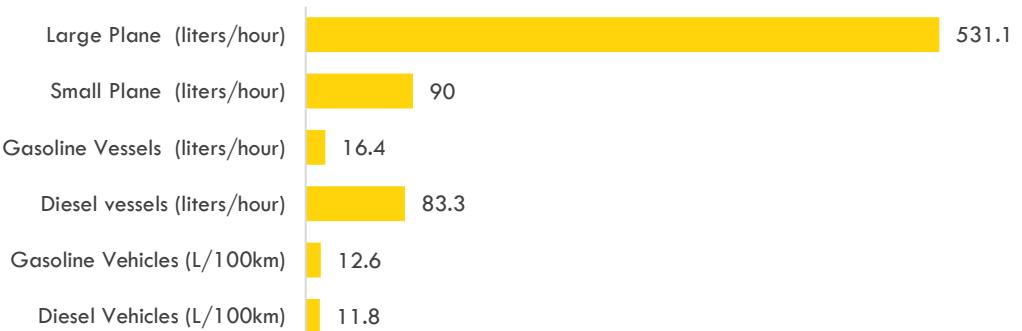
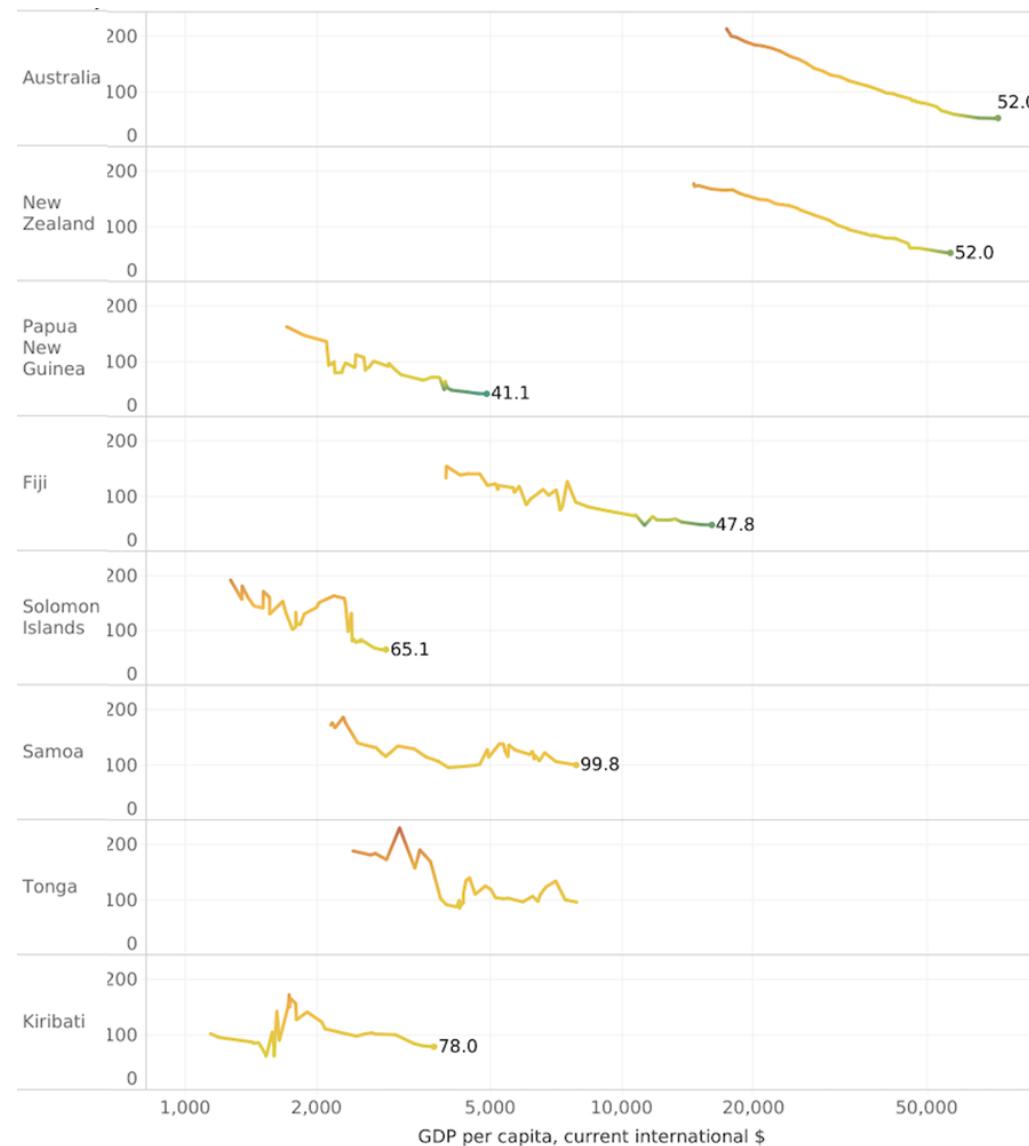
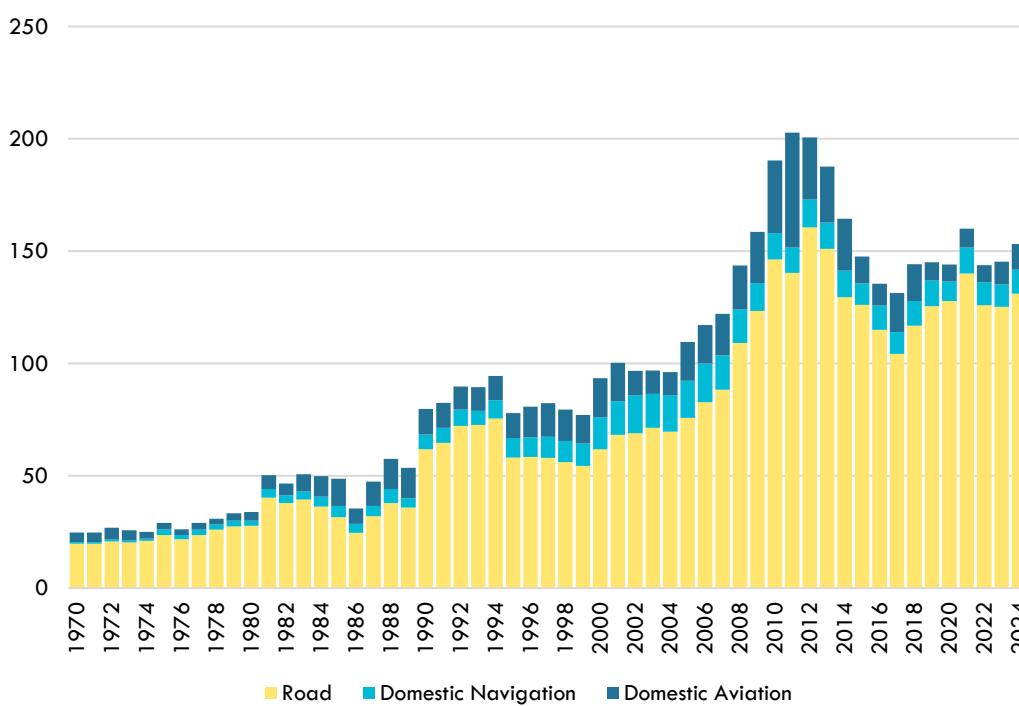




Figure 21: Fuel Efficiency of Representative Vehicle Stock

Source: ATO analysis and visualization based on: (Government of the Solomon Islands 2023c)

Global and regional transport emissions are slowing down. The sector's annual greenhouse gas growth decreased from 1.9 percent (2000–2015) to 0.7 percent worldwide after the Paris Agreement. In Asia, growth dropped from 4 percent to 1.7 percent. Emissions increased 14 percent between 1990 and 2011, then collapsed by 7 percent annually through 2017. Recent data indicate a return to growth. Since 2017, aggregate emissions have risen by 2.2 percent per year. Decomposition reveals the driver: road-sector emissions grew 3.3 percent annually, offsetting a 5.9 percent annual decline in domestic aviation (Figure 22).

In terms of transport GHG emissions intensity (emissions per GDP), Solomon Islands stands at 65 gCO₂ per USD, whereas Fiji and PNG are estimated to emit 48 and 41 gCO₂ per USD, respectively (Figure 23).

Transport's contribution to the total national GHG emissions is significant. Its share expanded from 23 percent in 2000 to 33 percent in 2011. However, due to reductions since 2011, it reached 25 percent in 2024. Electric vehicles are integral to decarbonization.

The import share of electric and plug-in hybrid vehicles in Solomon Islands has remained negligible, reaching only 0.4 percent in 2024 (Figure 24). The highest share saw a peak in 2022 at 1.4 percent in total road vehicle imports. Among the \$145,000 worth of EV imports, about \$90,000 were on electric goods vehicles, while the remaining are electric LDVs.

Electric vehicles do not produce direct tailpipe air pollutants. Therefore, decarbonization depends heavily on grid emissions. In Asia, where fossil fuels largely power electricity, grid emission levels remain some of the highest in the world. Since 2000, the carbon intensity of the region's electricity grids has hardly changed, only slightly decreasing from 635 gCO2/kWh in 2015 to 581 gCO2/kWh in 2022. For the Solomon Islands, the electricity grid emissions were 666 gCO2/kWh in 2015 and only slightly improved to 636 gCO2/kWh in 2023 (Figure 25). This indicates a slow and limited effort to decarbonize the electricity supply used for EVs, which is an important factor when assessing their overall climate impact.

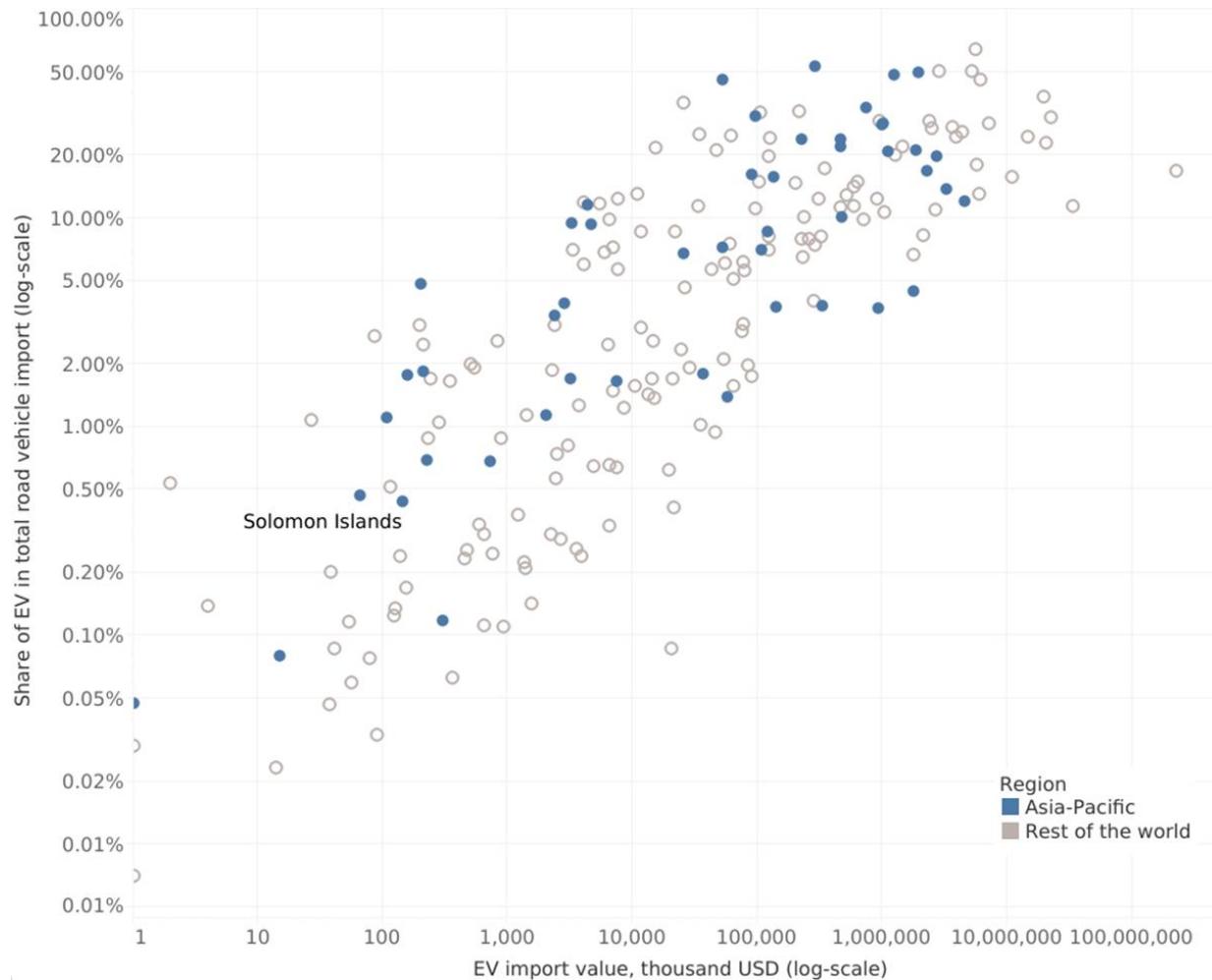


Figure 24: Share of EV in Total Road Vehicle Imports across Asia-Pacific and the World (2024)

Source: ATO analysis and visualization based on: (Trademap 2025)

The low-carbon transport policy in the Solomon Islands focuses on electrification, fuel efficiency, and shifting modes of transport. The Policy Roadmap for E-mobility in the Solomon Islands (Government of the Solomon Islands 2022) outlines the future of land transport. It establishes ambitious sales goals: under the high-ambition scenario, EVs should make up 12.3 percent of the total fleet by 2035.

The Roadmap aims for 100 percent sales penetration for two-wheeler and three-wheeler, 60 percent for taxis, and 70 percent for buses. Implementing these plans depends on the implementation of financial reforms. The Roadmap calls explicitly for reducing import duties on EV raw materials and components. It offers exemptions on registration fees and repeat taxes for EVs until 2035 to encourage initial adoption. The policy suggests gradually increasing GST on Internal Combustion Engine Vehicles to 23.05 percent by 2031 and requires a switch to Euro VI emission standards for all new imports.

In terms of the policy landscape, Infrastructure leads adoption. The Policy Roadmap for E-mobility establishes targets for charging density: 191 slow chargers and 389 fast chargers under the high-growth scenario. It mandates revisions to the 'Building code' and 'City development code' to require provisions for charger installation in new developments. Pricing mechanisms support this grid integration; the Roadmap introduces Time-of-Use (ToU) tariffs to differentiate between peak and off-peak charging costs. Public sector leadership is considered. Government departments are mandated to transition fleets to 100 percent EV procurement within five years.

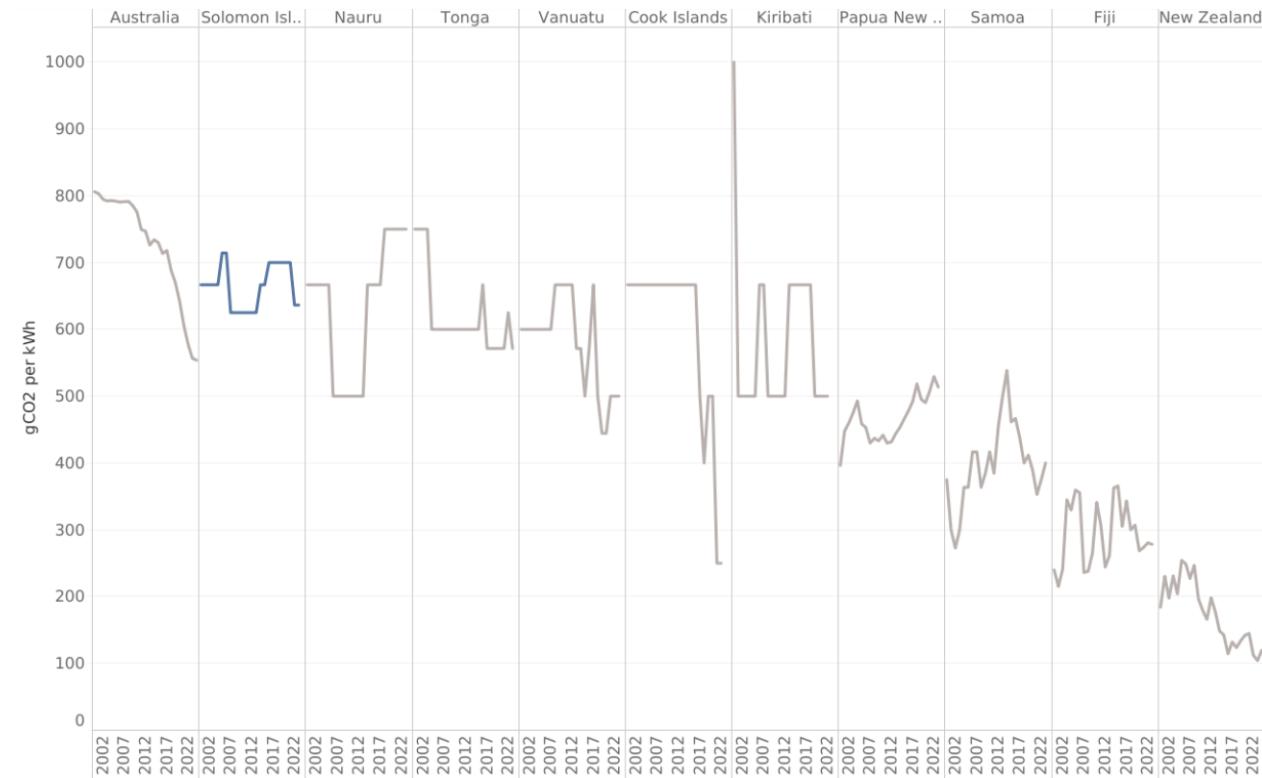


Figure 25: Grid Emission Factor in the Pacific 2000-2024

Source: ATO analysis and visualization based on: (EMBER n.d.)

The low-carbon transport policy in the Solomon Islands focuses on electrification, fuel efficiency, and shifting modes of transport.

Maritime decarbonization is central to the archipelago. The Solomon Islands Long-Term Low Emissions Development Strategy (LEDS) (Government of the Solomon Islands 2023c) targets a 40 percent reduction in domestic shipping emissions by 2030 and net-zero by 2050. It advocates for the deployment of zero-emission vessels and the development of charging infrastructure for domestic shipping. The Solomon Islands NDC 3.0 (Government of the Solomon Islands 2025d) further specifies the introduction of electric outboard motors (e-OBMs), aiming to reach 700 units by 2035, alongside additional measures for renewable propulsion and energy-efficiency retrofits for vessels.

The Solomon Islands Plan for a Sustainable Maritime Future (Solomon Islands Maritime Authority (SIMA) 2025) offers a practical roadmap to modernize domestic shipping. It targets net-zero emissions by 2050 through 20 priority actions (Table 1). The plan focuses on upgrading aging vessels and greening port infrastructure. Solomon Islands Maritime Authority (SIMA) coordinates these efforts alongside private stakeholders and development partners. This initiative aligns maritime goals with national climate policies to reduce fossil fuel reliance. It prioritizes safety, operational efficiency, and regional leadership in sustainability.

Table 1: Solomon Islands Plan for a Sustainable Maritime Future - Priority Actions

ID	Actions	Timescale		
		Short Term 2025-2026	Medium Term 2027-2029	Long Term 2029-2031
i.	Implement and effectively enforce MARPOL Annex VI.			
ii.	Enhance, implement and enforce laws and standards on operational and energy efficiency measures for domestic vessels, safety and registration of small crafts, and policies promoting cleaner propulsion systems.			
iii.	Regularly review and update national policies on sustainable maritime transport, aligning them with evolving global standards.			
iv.	Develop fiscal and regulatory incentives to support adoption of energy-efficient and low-emission technologies in the domestic maritime sector, including small crafts and domestic ships, through duty reform, grant schemes, and investment-enabling policies			
v.	Launch projects on data collection, energy efficient management and operations of vessels.			
vi.	Implement a vessel retrofit and replacement programme to enhance operational and technical ship efficiency as well as promote the introduction of zero-emission and hybrid vessels for domestic shipping particularly on uneconomical and climate-vulnerable routes.			
vii.	Facilitate the import, installation, and maintenance of new ship energy efficient technologies through partnerships with manufacturers and suppliers.			
viii.	Analyse and optimize existing domestic ship schedules to enhance inter-island connectivity.			
ix.	Extend the green port concept to other ports, optimizing operational efficiency, enabling just-in-time arrivals and reducing ship turnaround time informed by master energy audits and national guidelines on resilient maritime infrastructure, accounting for climate-resilient maritime infrastructure.			
x.	Enhance capacity and establish systems at SIMA for tracking domestic ships, analysing fuel consumption and establishing emissions baselines including for small crafts, to support comprehensive MRV.			
xi.	Enhance capacity and establish systems and procedures at SIMA to implement and enforce laws, policies and standards relating to energy efficiency, including tracking international vessels and implementing PSC.			
xii.	Enhance capacity and establish systems and procedures at SIPA to improve efficiency at the ship-port interface.			
xiii.	Strengthen maritime training and education at SINU and the Solomon Islands Maritime College, promoting gender inclusion and upgrading infrastructure, equipment, and training material to cover energy efficiency, green ship operations, maintenance of small-craft outboard motors, and coastal engineering for resilient infrastructure development.			
xiv.	Enhance the capacity of shipping companies to improve the operational efficiency of domestic ships and operate profitable business models.			

Source: Solomon Islands Maritime Authority (SIMA) 2025

Aviation strategy focuses on operational efficiency and technology. The Solomon Islands Action Plan to Reduce CO2 Emissions from International Aviation (Government of the Solomon Islands 2023a) promotes the purchase of fuel-efficient aircraft, such as the A320 and the DHC-6 Twin Otter Glass Cockpit. It also encourages operational improvements, such as reducing weight through digitalization and enhancing air traffic management, to minimize delays. While sustainable aviation fuels (SAF) are recognized, the plan prioritizes capacity building due to resource constraints.

Broader strategies integrate these modal shifts. The National Energy Policy 2014 (Government of the Solomon Islands 2014) encourages the use of alternative liquid fuels and provides tax incentives for energy-efficient vehicles. The NDC 3.0 (Government of the Solomon Islands 2025d) outlines activity assumptions for 2035, including the operational deployment of biofuel vehicles and the establishment of an e-bus system in Honiara. Financing mechanisms are critical; the Policy Roadmap for E-mobility (Government of the Solomon Islands 2022) directs banks to include EV financing in priority lending and proposes a pollution cess on ICEVs to fund low-carbon initiatives.

Effective climate action in the Solomon Islands depends on a structured, multi-sectoral approach centered around the National Climate Change Policy 2023–2032. This policy links domestic priorities with international development aid and aligns with the Paris Agreement and Sustainable Development Goals (SDGs), ensuring local transport initiatives support global decarbonization efforts.

Low Carbon governance is distributed across a triad of ministries: Ministry of Environment, Climate Change, Disaster Management and Meteorology handles technical coordination and environmental integrity; Ministry of National Planning and Development Coordination incorporates climate resilience into national strategies; Ministry of Finance and Treasury oversees climate finance and fiscal transparency. Although these bodies set the framework, implementation of low-carbon transport is decentralized, with line ministries executing projects aligned with their mandates.

Accountability is maintained through the Climate Change Division, which tracks progress via Biennial Transparency Reports and the integrated Monitoring, Reporting, and Verification (iMRV) tool. Transport decarbonization involves both social and technical aspects, requiring stakeholder engagement to validate policies. The development of the NDCs reflects this inclusive process, engaging civil society, NGOs, and partners. The policy stipulates that project proposals must undergo rigorous validation to address environmental and social impacts.

“Solomon Islands aims to maintain net zero emissions across all sectors by 2050 with equitable economic growth and resilience” - The Solomon Islands Long-Term Low Emissions Development Strategy (LEDS)

Transport GHG Emissions Outlook

The Solomon Islands Long-Term Low Emissions Development Strategy (LEDS) (Government of the Solomon Islands 2023c) projects that transport demand for road and shipping could increase by 87 percent between 2020 and 2050 (Figure 26, Figure 27). Under a business-as-usual trajectory, Solomon Islands' national greenhouse gas emissions are projected to rise from 900,000 tons of CO2-equivalent in 2020 to 1,627,000 tons by 2050. The transport and waste sectors will see the most significant absolute increases, with transport emissions nearly doubling—an 84 percent increase over the three decades. Adopting a low-emissions pathway for the transport sector could substantially mitigate these effects, reducing emissions by approximately 253,000 tons of CO2-equivalent annually by 2050 compared to the business-as-usual scenario. This potential underscore the critical role of targeted mitigation measures as identified in LEDS (Government of the Solomon Islands 2023c) (Table 2) and NDC (Government of the Solomon Islands 2025d).

Table 2: Target in 2035 (KPI)

KPI	VALUE
Land Transport GHG Mitigation (ktCO2e/yr)	14.1
Maritime Transport GHG Mitigation (ktCO2e/yr)	16.6
4-stroke or e-outboard motors (no.)	6700
Green boats and vessels (no.)	6
Vessels undergoing energy efficiency improvements (no.)	60
Vehicles with higher fuel efficiency (no.)	7500
Repaired, replaced, and new wharves and jetties (no.)	46
Operational biofuels vehicles (no.)	30
New resilient design standards operationalized (no.)	3
Introduced e-buses	40
On-shore renewable power supply capacity at ports (MWp)	0.44
Number of trained and certified seafarers in green maritime technology (no.)	500
Number of vessel operators completing energy efficiency courses (no.)	100

Source: (Government of the Solomon Islands 2023c)

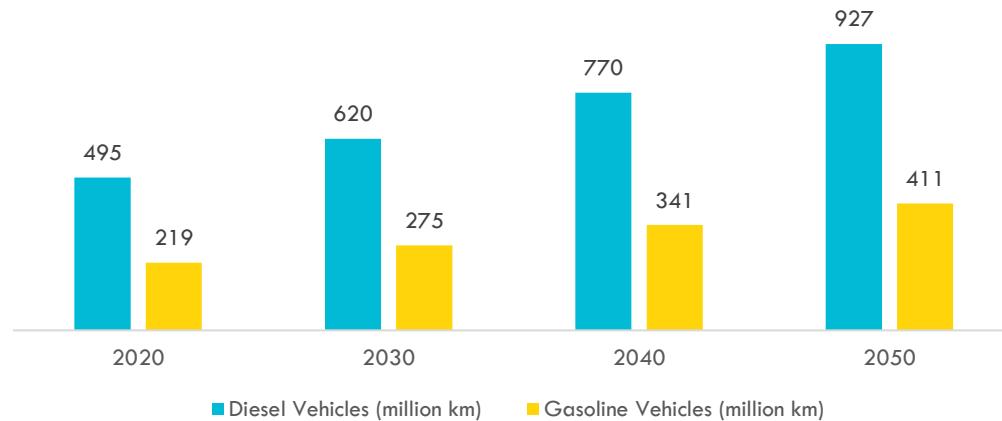


Figure 26: Demand Projection for Land Transport

Source: ATO analysis and visualization based on: (Government of the Solomon Islands 2023c)

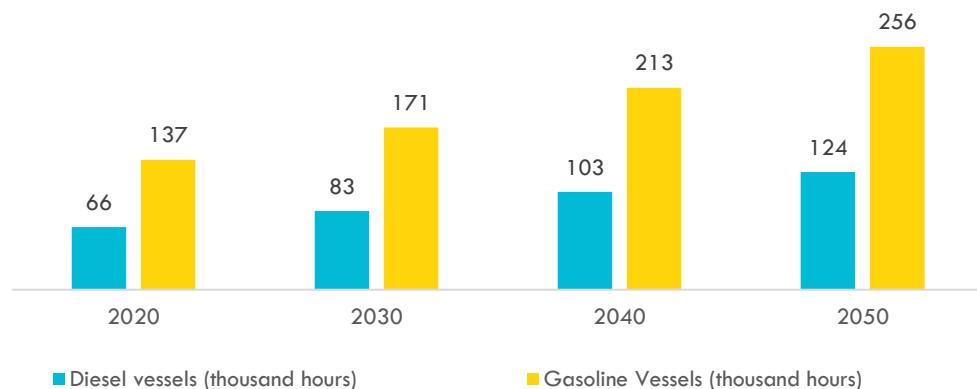


Figure 27: Demand Projection for Sea Transport

Source: ATO analysis and visualization based on: (Government of the Solomon Islands 2023c)

On the aviation front, efficiency is pursued through technical modernization. The Solomon Islands Action Plan to Reduce CO2 Emissions from International Aviation (Government of the Solomon Islands 2023a) focuses on asset optimization—specifically the purchase of A320 and DHC6 Twin Otter aircraft with glass cockpits—to "minimize weight" and leverage "predictive analytics" to streamline air traffic management. This pragmatic approach is coupled with voluntary participation in the Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). Simultaneously, the Medium Term Transport Action Plan 2019-2023 (Government of the Solomon Islands 2018) reinforces the maintenance of runways and the "expansion of aprons" to reduce ground-level inefficiencies. Figure 28 shows the estimated forecast of annual CO2 emissions before and after implementation of State Action Plan measures, highlighting the impact of mitigation actions, once implemented.

Climate resilience and disaster preparedness in transport

Climate change is a fundamental obstacle to the Solomon Islands' development. It risks the detachment of economic growth from social stability across all sectors. The financial challenge is significant: the cost of adaptation far exceeds the country's GDP, putting constant pressure on national finances. Located at the volatile boundary of the Pacific "Ring of Fire" (Government of the Solomon Islands 2021a) and the cyclone zone, the nation faces ongoing tectonic and weather-related threats—earthquakes, tsunamis, and floods are routine, not exceptional. Since 1990, the country has experienced 25 disasters, including droughts, earthquakes, floods, and tropical cyclones. These incidents are believed to have affected more than 400,000 people (Government of the Solomon Islands 2024c). In this setting, climate change worsens these hazards, speeding up the deterioration of vital infrastructure. Rising sea levels not only threaten land but also erode coastal causeways that sustain the economy, leading to heavier rainfall that triggers landslides, cutting off key routes and isolating communities and markets.

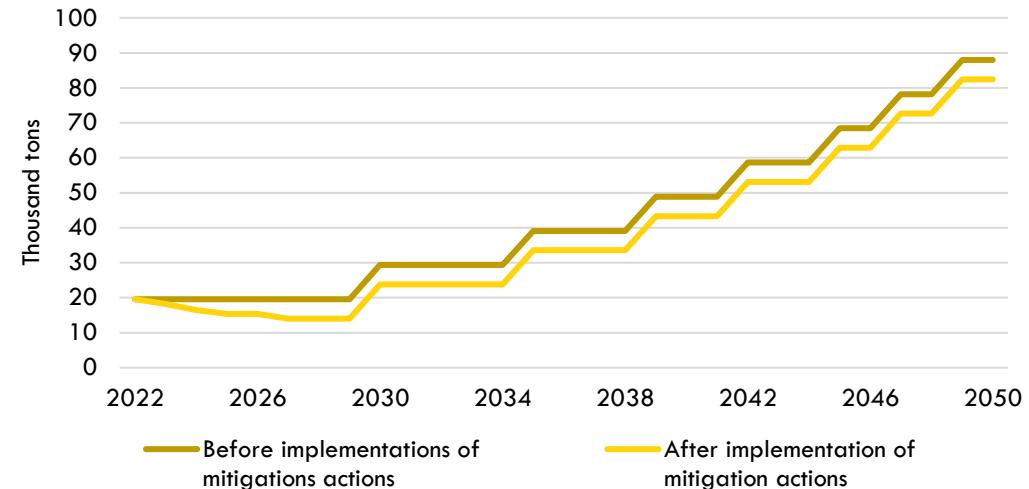


Figure 28: Annual CO2 Emissions Before and After Implementation of State Action Plan Measures
Source: ATO analysis and visualization based on: (ICAO 2025)

The fiscal math is challenging. Adaptation costs already dwarf national capacity, creating a constant drag on the budget. Projections indicate that the convergence of natural hazards and shifting climate baselines will impose an annual average direct loss of \$20.5 million over the next half-century (WB 2022a). This could effectively shrink GDP by 3 percent every year. This financial flow forces the government into a "mode of recovery." Capital that should fuel new growth is instead spent on repeatedly repairing the same assets. The 2014 flash floods, which erased 9.2 percent of GDP in a single event, serve as a precedent (Government of the Solomon Islands 2025d). While high-emissions scenarios suggest tropical cyclones may decrease in frequency, their intensity will spike, delivering shock events capable of obliterating years of economic progress (WB 2022a).

The Solomon Islands' transport infrastructure follows a "coastal-mountainous" pattern, leaving little margin for error. Most people and critical services are situated along a narrow 1.5-kilometer coastal strip, with the main roads running along the water's edge. Since most of these roads are unpaved, they become impassable during heavy rain. The transport sector faces estimated annual losses of around \$0.33 million to about \$1.6 million, with 83 percent of this damage occurring to the road network. This corresponds to about 0.015 percent of the country's GDP (Figure 29). The losses are mainly due to landslides and earthquakes.

Risk and damage estimates vary greatly depending on the assumptions made. Verschuur et al (2023) estimated that in the Solomon Islands, the annual risk per port is approximately \$1 million, accounting for physical damages to port infrastructure, critical infrastructure nearby—such as electricity, roads, rail, and power plants within a 1 km radius—and the logistical losses incurred by port operators, carriers, and shippers due to operational downtime. If we only consider the trade expected to be disrupted annually by natural hazards and maritime extremes, this figure could rise to about \$2 million.

Institutional oversight of the Solomon Islands' environmental framework is the responsibility of the Ministry of Environment, Climate Change, Disaster Management, and Meteorology. This Ministry supports the national response to climate challenges through four technical divisions and a corporate services unit. This governance structure implements Objective 4 of the National Development Strategy 2016-2035, which calls for "resilient and environmentally sustainable development" via integrated disaster risk management and climate adaptation strategies. To promote long-term planning, the Solomon Islands' 2021 Nationally

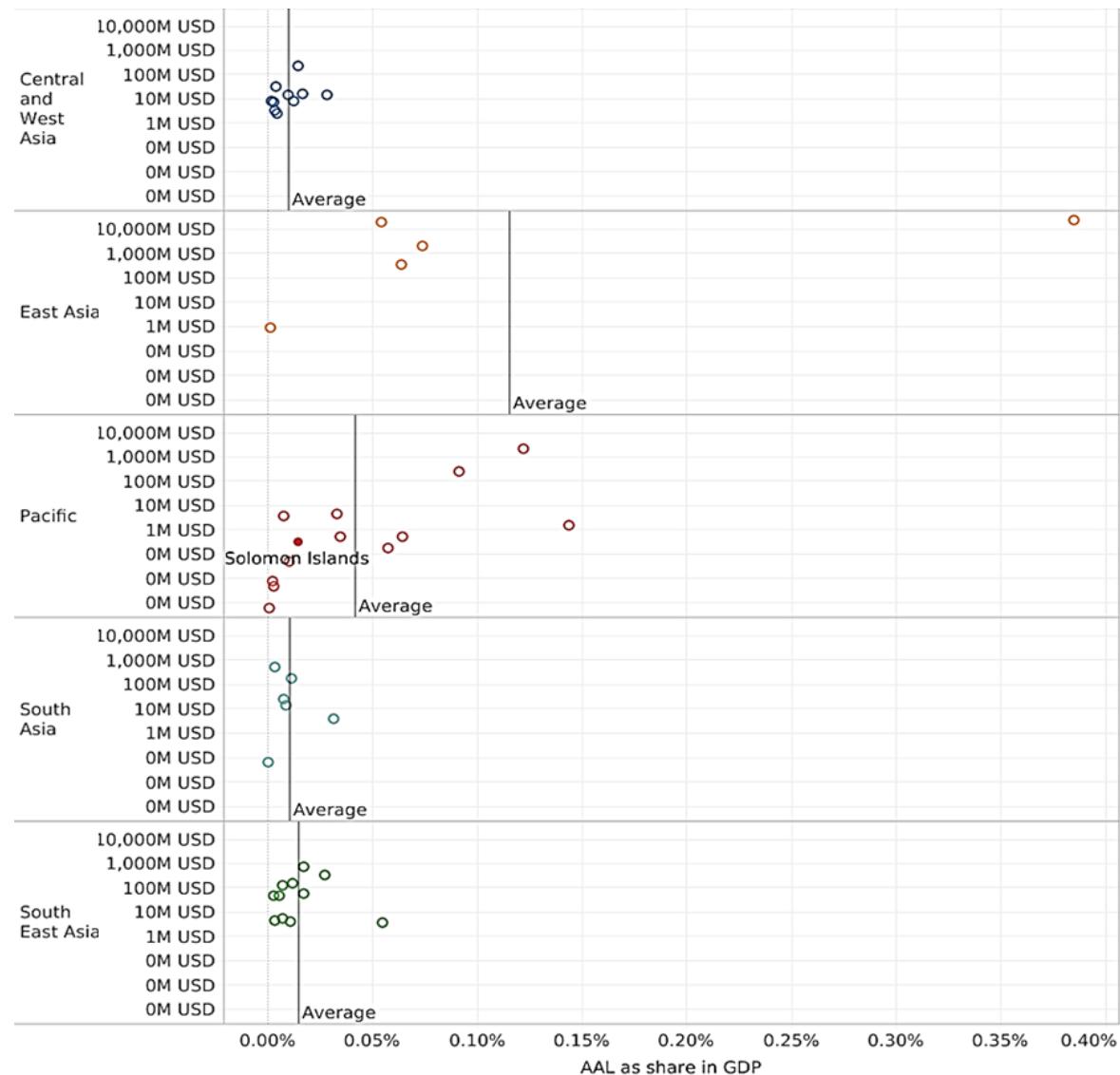
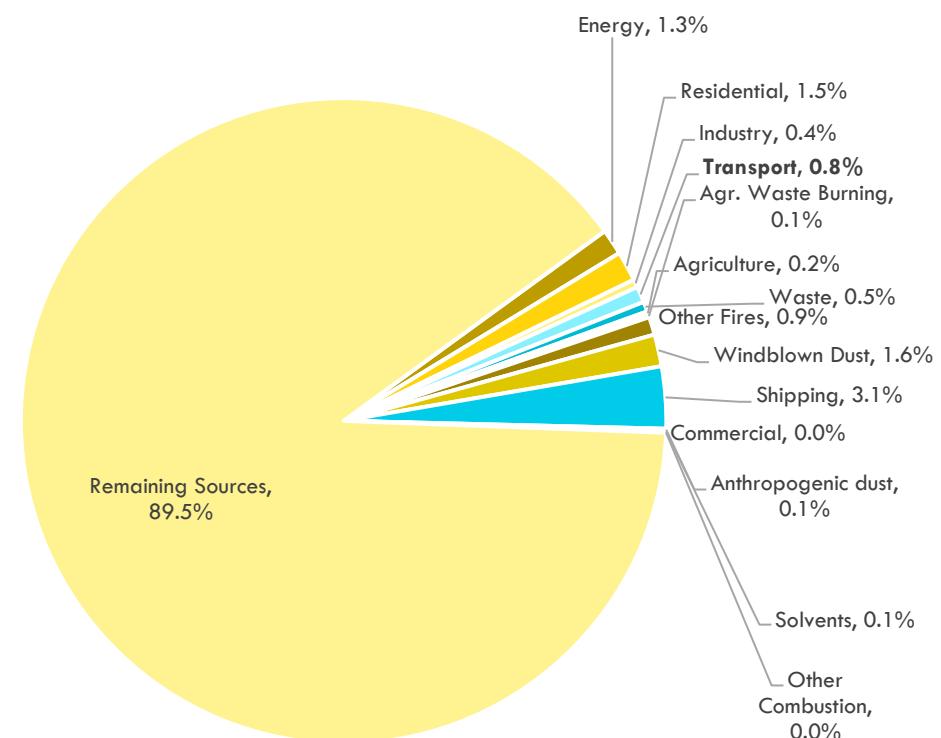


Figure 29: Average Annual Losses (AAL) to Transport Infrastructure as Share of GDP

Source: ATO analysis and visualization based on: (CDRI n.d.)


Determined Contributions (Government of the Solomon Islands 2021b) focus on developing the National Adaptation Programme of Action (NAPA) into a comprehensive National Adaptation Plan (NAP).

To translate these high-level directives into physical infrastructure resilience, the Medium-Term Transport Action Plan 2019-2023 (Government of the Solomon Islands 2018) recommends maintenance of airfield drainage and perimeter assets to reduce hydro-meteorological risks. The Ministry of Infrastructure Development's Corporate Plan (Government of the Solomon Islands 2025c) utilizes the Solomon Islands Transport Asset Management System (SITAMS) to monitor baseline indicators for more than 2,000 water crossings. These data-driven protocols support the National Bridge Improvement Program's goal of ensuring that all bridges over 6 meters are maintainable by 2026, while also requiring the annual sealing of about 10 kilometers of road extensions to prevent flood-related damage. Additionally, the Smooth Transition Strategy to support graduation from Least Developed Country Status (Government of the Solomon Islands 2025e) allocates capital toward "climate resilient investments" across land, sea, and air networks. To maintain operational continuity during severe weather events, the National Development Strategy 2016-2035 (Government of the Solomon Islands 2016a) mandates the deployment of Multi-Hazard Early Warning Systems and Quality Management Systems for aviation weather services.

Transport Air Pollution

Unlike vehicle crashes, the transport sector is not a major contributor to air pollution, which remains a silent killer. Key sources of air pollution include transport, residential fuel burning, energy production, industrial processes, agriculture, windblown dust, waste incineration, and construction. The impact of these sources on ambient PM2.5 levels varies globally. In 2021, transport accounted for approximately 3.9 percent of PM2.5 pollution in the Solomon Islands, primarily domestic shipping, which accounted for 3.1 percent (State of Global Air 2024) (Figure 30). Most of the air pollution in the Solomon Islands was not due to domestic sources but to regional sources.

Unlike vehicle crashes, the transport sector is not a major contributor to air pollution, which remains a silent killer.

Figure 30: Ambient PM2.5 in Solomon Islands, Contribution by Source
Source: ATO analysis and visualization based on: (State of Global Air 2024)

Pollutant emissions reveal the prominence of different transport modes. In 2022, transport accounted for 60 percent of total PM2.5 emissions, with the maritime sector playing a key role; domestic navigation alone accounted for 80 percent of these emissions. Over time, there have been significant declines: from 2000 to 2022, transport PM2.5 emissions decreased by 31 percent. The road sector led this decline with a 47 percent reduction, whereas domestic shipping saw a 25 percent drop. (Figure 31)

Nitrogen oxides are primarily terrestrial, with transport responsible for 35 percent of total NOx emissions in 2022. Unlike particulates, the NOx distribution differs: two-thirds of transport NOx came from roads, and one-third from domestic navigation. Emissions have been declining overall, with a 33 percent decrease from 2000 to 2022, with reductions of 29 percent and 31 percent in the road and shipping sectors, respectively. In contrast, Sulphur oxides are mainly marine, with transport accounting for 8 percent of total SOx emissions in 2022; domestic navigation contributed 98 percent of this figure. Policy measures have had diverse effects: total transport SOx emissions decreased by 34 percent from 2000 to 2022, with the road sector nearly eliminating these emissions (96 percent reduction), while domestic shipping reductions were more modest at 30 percent. (Figure 31).

In 2021, air pollution caused 8.1 million deaths worldwide (State of Global Air, 2024), ranking as the second leading risk factor for mortality, especially among children under five. About 90 percent of these deaths are linked to noncommunicable diseases such as heart disease, stroke, diabetes, lung cancer, and COPD—all rooted in poor air quality. The transport sector plays a significant role in serious health issues such as respiratory and cardiovascular diseases, cancer, and adverse birth outcomes.

Research indicates that in 2019, air pollution from transport caused approximately 250,000 premature deaths annually across Asia (McDuffie et al., 2021), of which about four occurred in the Solomon Islands. In total, combining all sources, the total health damages due to ambient and household PM 2.5 exposure amounts to about \$214 million of health damages from PM2.5 exposure in 2019 (Figure 32).

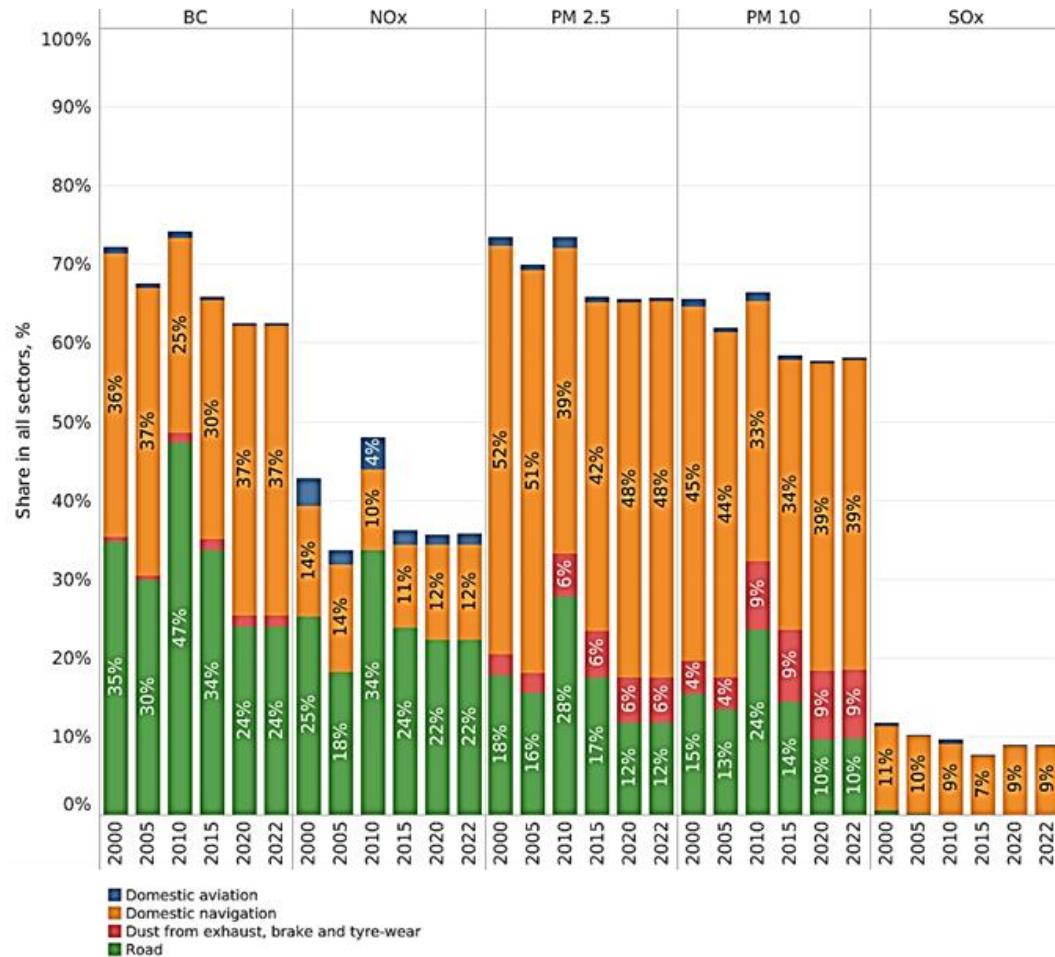
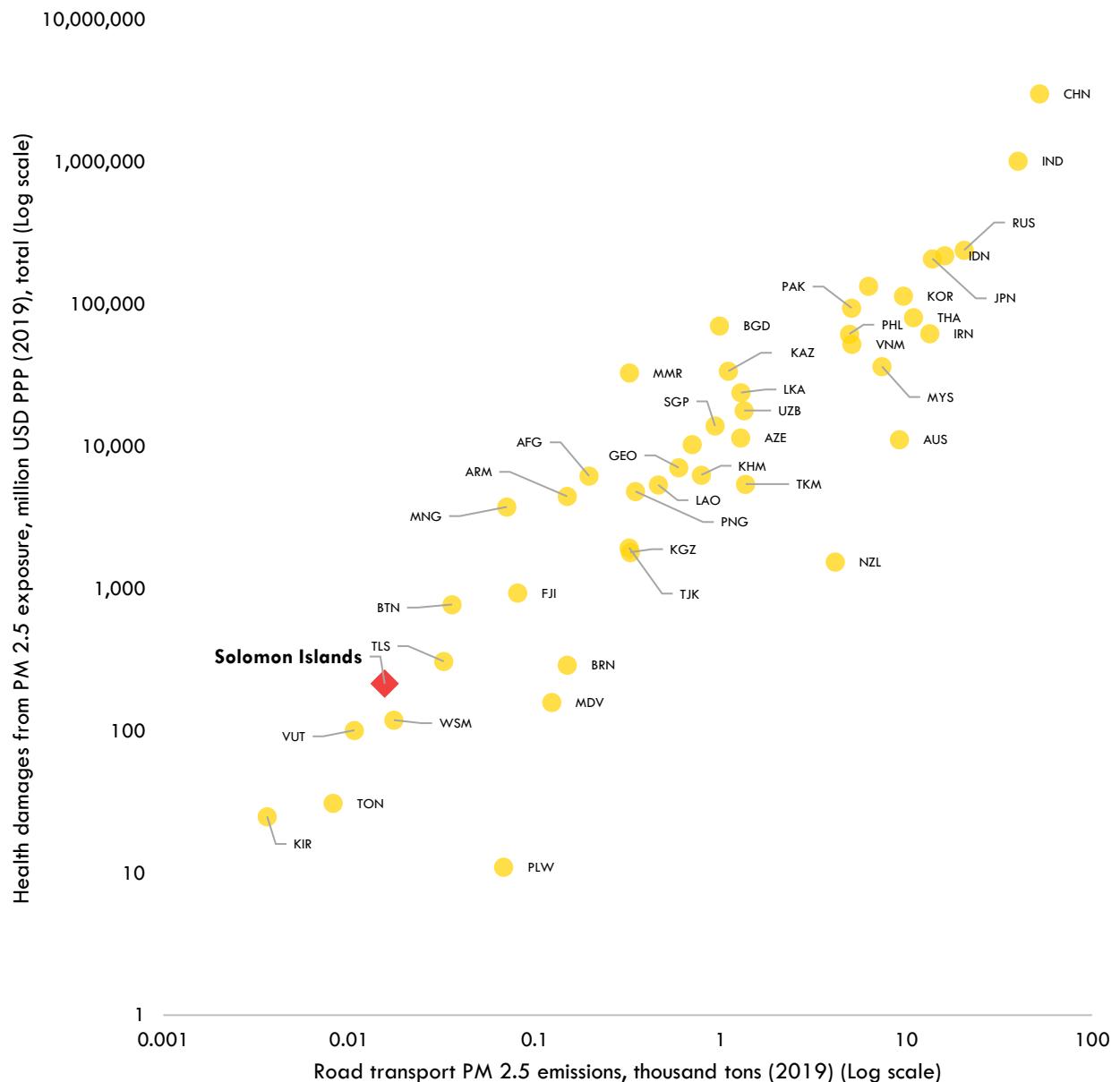



Figure 31: Share of Domestic Transport in Total Economy-wide Emissions, by Mode and Substance
Source: ATO analysis and visualization based on: (European Commission 2024)

The Solomon Islands Long-Term Low Emissions Development Strategy (Government of the Solomon Islands 2023c) commits to a 40 percent reduction in domestic shipping GHG emissions by 2030, aiming for a "Pacific Ports 2030-2050" vision (International Maritime Organization et al. 2024). This is a systemic overhaul requiring the "use of zero emissions vessels and charging infrastructure for domestic shipping." The disparity between the policy horizon and current asset deployment highlights the urgent need for the "Green Voyage 2050" (GV2050, n.d.) initiative mentioned in the Solomon Islands National Communication (Government of the Solomon Islands 2024b) to move from planning to procurement.

Ultimately, the success of these measures relies on the rigorous enforcement mechanisms outlined in the Traffic Act 1996 (Government of the Solomon Islands 1996) and the Ministry of Infrastructure Development Corporate Plan (Government of the Solomon Islands 2025c), which must transition from monitoring "road worthiness" to enforcing strict "vehicle emission standards" (Euro VI for new imports), ensuring that the legislative architecture translates into measurable air quality improvements.

Figure 32. Health Damages from PM 2.5 Exposure (2019)
Source: ATO analysis and visualization based on: (World Bank 2022)

**Leverage Science, Technology,
and Innovation for Sustainable
Transport**

Leverage Science, Technology, and Innovation for Sustainable Transport

Less than half the population has internet access (Figure 33). Yet, the Solomon Islands is leveraging innovation for sustainable transport. The Solomon Islands Maritime Authority Corporate Plan 2024-2027 (Government of the Solomon Islands 2023b) operationalizes a critical transition toward "e-navigation." It recommends deploying Multi-Beam Echo Sounder (MBES) technology. This is not just for safety; it enables the precise mapping needed to accommodate larger, more efficient vessels, thereby reducing the per-unit cost of inter-island freight. This digital upgrade supports the Maritime Development and Resilience Strategy (Government of the Solomon Islands 2024a) and aligns directly with NDS (Government of the Solomon Islands 2016a) Objective 3 (Access to Services). By digitizing hydrographic charts, the state reduces insurance premiums for international shipping and opens new domestic routes previously deemed too hazardous for commercial navigation.

The digitalization of customs via the Automated System for Customs Data (ASYCUDA) World system has transformed revenue collection and port efficiency. The Ministry of Finance Corporate Plan 2025-2027 (Government of the Solomon Islands 2025c) recommends further improvements to the ASYCUDA World System to significantly boost efficiency, primarily by reducing clearance times for compliant traders, and to enhance integration with other Government Stakeholder systems involved in the Customs Clearance Process.

The National Transport Plan (NTP) 2017-2036 (Government of the Solomon Islands 2016b) marks a departure from traditional infrastructure rehabilitation practices. The "Science" here is data analytics. The Ministry of Infrastructure Development recognizes that climate change—specifically rainfall intensity and sea-level rise—accelerates pavement deterioration. The introduction of RAMS (as discussed earlier) shifts the maintenance regime from reactive to predictive. By utilizing satellite imagery, geospatial, and sensor data to model flood immunity, the MID plans to prioritize interventions based on economic necessity.

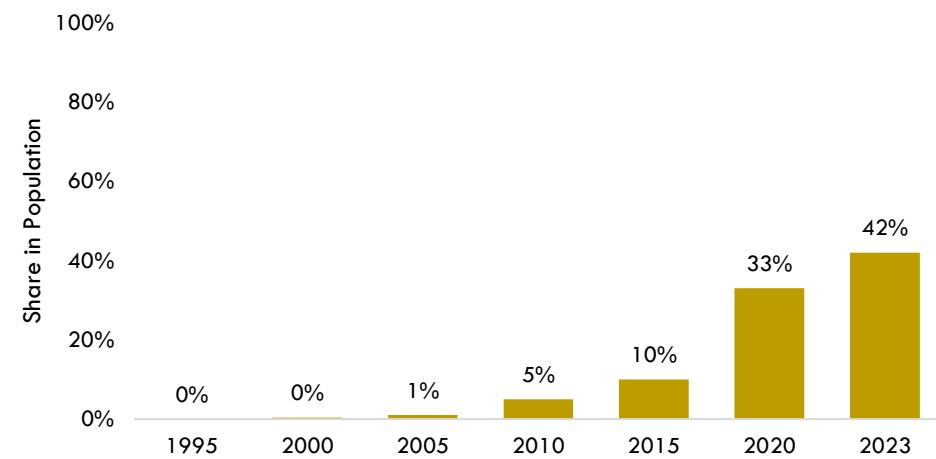


Figure 30. Share of average annual losses by mode
ATO analysis and visualization based on: (CDRI, 2023)

Less than half the population has internet access. Yet, the Solomon Islands is leveraging innovation for sustainable transport.

Crosscutting

Transport Sector's Economic Contribution and Employment

Since 2000, the GDP has grown at an average annual rate of about 5.4 percent, roughly twice the rate of population growth (Figure 34). This rapid expansion has increased demands on Solomon Islands' transport system, which must adapt to economic growth, urbanization, and national development. The transport sector is growing quickly and is a vital part of the economy, contributing 6-7 percent consistently to total gross value added.

While the transport sector plays a significant role in Solomon Islands' GDP, the costs of inefficiencies heavily impact the economy. Externalities related to transport cover a wide range, from climate change effects caused by greenhouse gas emissions to local public health issues stemming from premature deaths due to pollutants like PM2.5. Additional challenges come from traffic congestion, road deterioration, and the external costs of road crashes. In 2024, these external costs are estimated at around \$7 million, a significant share of the national economy (Figure 35). This figure highlights the need to improve transport, not just as an economic issue but also as a social and environmental priority, reflecting broader costs that go beyond direct financial figures.

Transport directly employs around 13 thousand people, making up approximately 3 percent of total employment. Since 2000, employment in the transport sector has grown by 2.2 percent, which is slightly below the Asian average of 2.5 percent. Meanwhile, Solomon Islands' GDP has increased by 5.4 percent, and its population has grown by 2.6 percent. (International Labour Organization 2024; United Nations Department of Economic and Social Affairs Population Division 2022).

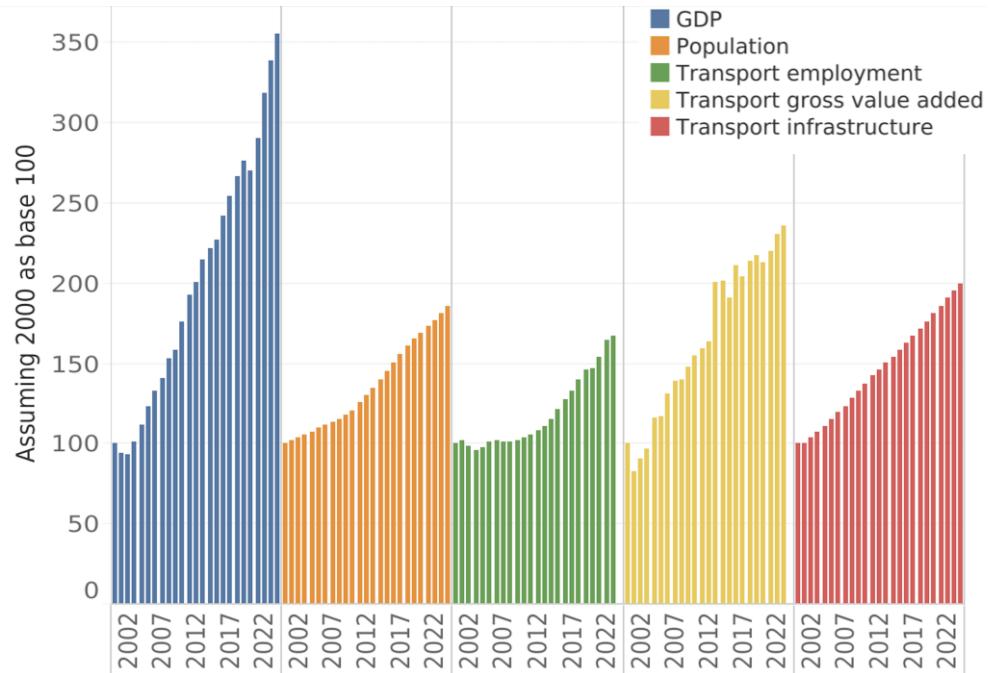


Figure 34: Growth Drivers

Source: ATO analysis and visualization based on: (ATO 2025b; ILO 2025; United Nations Department of Economic and Social Affairs Population Division 2022; UNStats, n.d.; World Bank 2023)

Figure 35: External Cost to Society due to Fossil Fuel Subsidies in Transport, 2024

Source: ATO analysis and visualization based on: (IMF 2024)

Since 2015, average labor productivity levels in Solomon Islands have decreased by more than 1 percent per year (Figure 36). A concerning trend when compared to about 2 percent average annual improvement for the Pacific Islands, and a 4 percent improvement per year for Asia-Pacific during the same period.

Gender in the Transport Sector: Addressing Disparities

Women in the Solomon Islands transport sector remain marginalized. They comprise nearly half the population (49 percent) but hold only about 7.3 percent of transport jobs (Figure 37). In 2000, that figure was 22 percent. Meanwhile, women represent 48 percent of total employment across the economy. This imbalance is deliberate; it highlights structural barriers to entry and retention in a field that is still male-dominated. (ILO 2025)

In terms of road safety, women constitute about 24 percent of road crash fatalities, even if about 21 percent of women are classified as insufficiently physically active—engaging in less than 150 minutes of moderate or vigorous physical activity per week (World Obesity Federation, n.d.)—an outcome partly influenced by land-use planning, limited safe walking environments, and unreliable, crowded public transport.

The Solomon Islands aimed to increase female labor force participation from 48 percent to at least 70 percent by 2020, but this goal was not reached. Policy frameworks are starting to recognize these disparities, but implementation remains uncertain. The National Development Strategy 2016–2035 (Government of the Solomon Islands 2016a) and the Solomon Islands National Transport Plan 2017–2036 (Government of the Solomon Islands 2016b) both require gender-responsive design—such as lighting at waiting areas, safe footpaths, separate toilets, and grievance mechanisms—as essential parts of new and rehabilitated infrastructure. They also apply gender perspectives to rural micro-mobility projects that aim to improve women's access to schools, clinics, markets, and water sources through infrastructure investments.

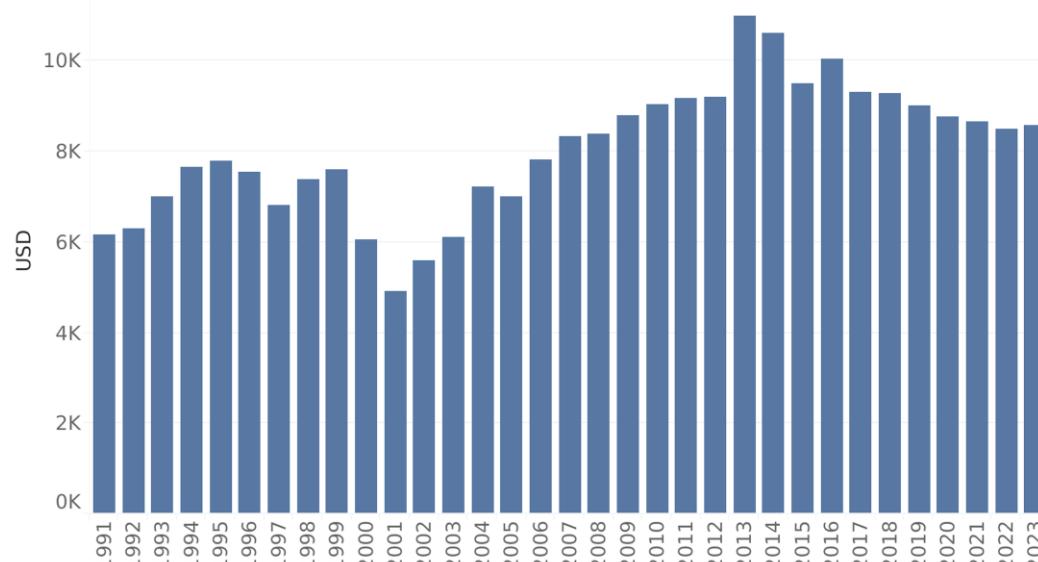


Figure 36: Gross Value Added per Employee in Solomon Islands

Source: ATO analysis and visualization based on: (ILO 2025; UNStats, n.d.)

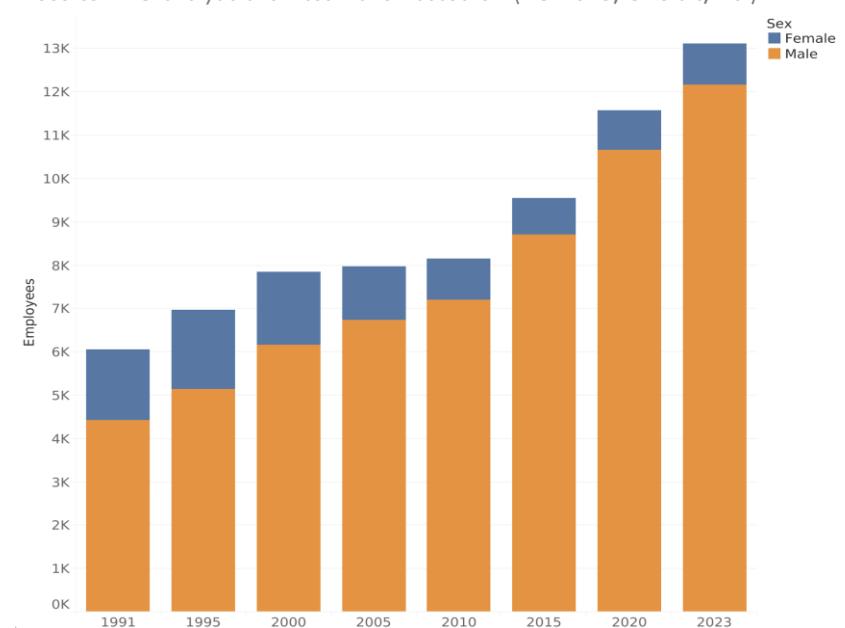


Figure 37: Employment in the Transport Sector (Operations and Services; ISIC category H and J) in Solomon Islands

Source: ATO analysis and visualization based on: (ILO 2025)

The Policy Roadmap for E-mobility in the Solomon Islands (Government of the Solomon Islands 2022) favors fiscal levers to lower entry barriers for women, including an additional 0.5 percentage point reduction in GST and customs duties where full exemptions do not apply, and a 0.5 percentage point preferential interest rate for women within priority EV lending portfolios.

Institutional safeguards and capacity building aim to lock in these gains. The E-mobility Roadmap (Government of the Solomon Islands 2022) reserves at least 25 percent of seats for women trainers and learners across all awareness and skills programs, while the National Transport Plan requires a full-time safeguards team to oversee social, community, and governance issues, including gender.

Transport Investments - ODA and PPP

Transport investments in the Solomon Islands face challenges due to its size and geographical spread: a small population scattered across about 90 inhabited islands leads to high unit costs, making every kilometer of infrastructure disproportionately expensive to build and maintain.

Road user revenues are approximately 30 million (WB 2025), about twice the annual maintenance estimate, deriving about 34 percent of the share from Fuel Goods Tax (Figure 38). However, the sector faces challenges in ensuring predictable capital flows. Capital spending by the Ministry of Infrastructure Development plummeted by roughly 83 percent from its peak of around \$257 million in 2017 to about \$43 million in 2020, decreasing from 28 to 9 percent of total public capital expenditure (WB 2022b). During this period, spending on essential transport infrastructure—such as roads, bridges, airfields, and wharves—dropped by nearly 80 percent, leading to a reduced pipeline of domestically funded projects and a growing dependence on external funding.

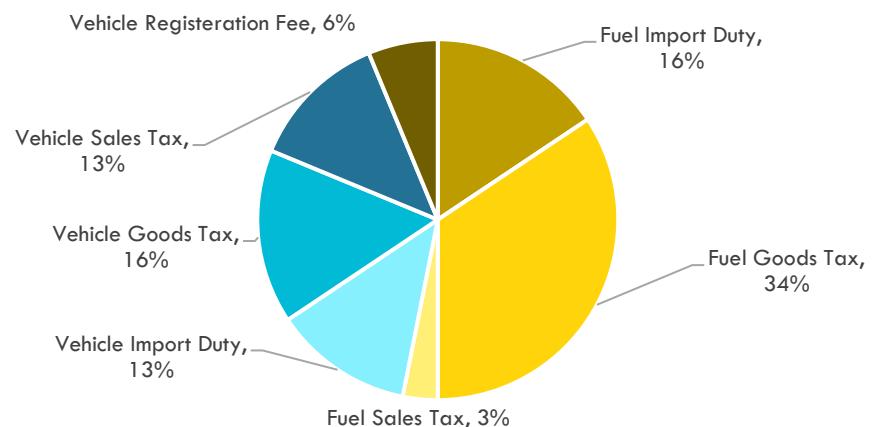


Figure 38: Road User Revenues Share

Source: ATO analysis and visualization based on: (WB 2025)

Development partners are increasingly active in this sector. Official development assistance now plays a vital role in funding new transport projects, with multilateral banks and bilateral agencies financing roads, ports, and airports that the national budget alone cannot support. Since the 2015 adoption of the Sustainable Development Goals, transport-related ODA has totaled around \$240 million, with approximately 47 percent going to roads, 12 percent to ports, and 39 percent to airports. From 2005 to 2014, the sector received about \$136 million, mainly for roads. This change in both volume and composition indicates that, while the government continues to plan and regulate, the financial risks are increasingly borne by donors (Figure 39).

Private capital has yet to play a similar role. Public-private partnerships are mainly discussed in the context of urban transport in Honiara, but limited institutional experience and a weak domestic private sector have hindered concrete PPP transactions. No significant private investments have been completed in the transport sector, leaving the government as the primary source of funding for physical infrastructure, constrained by narrow fiscal space and competing social priorities.

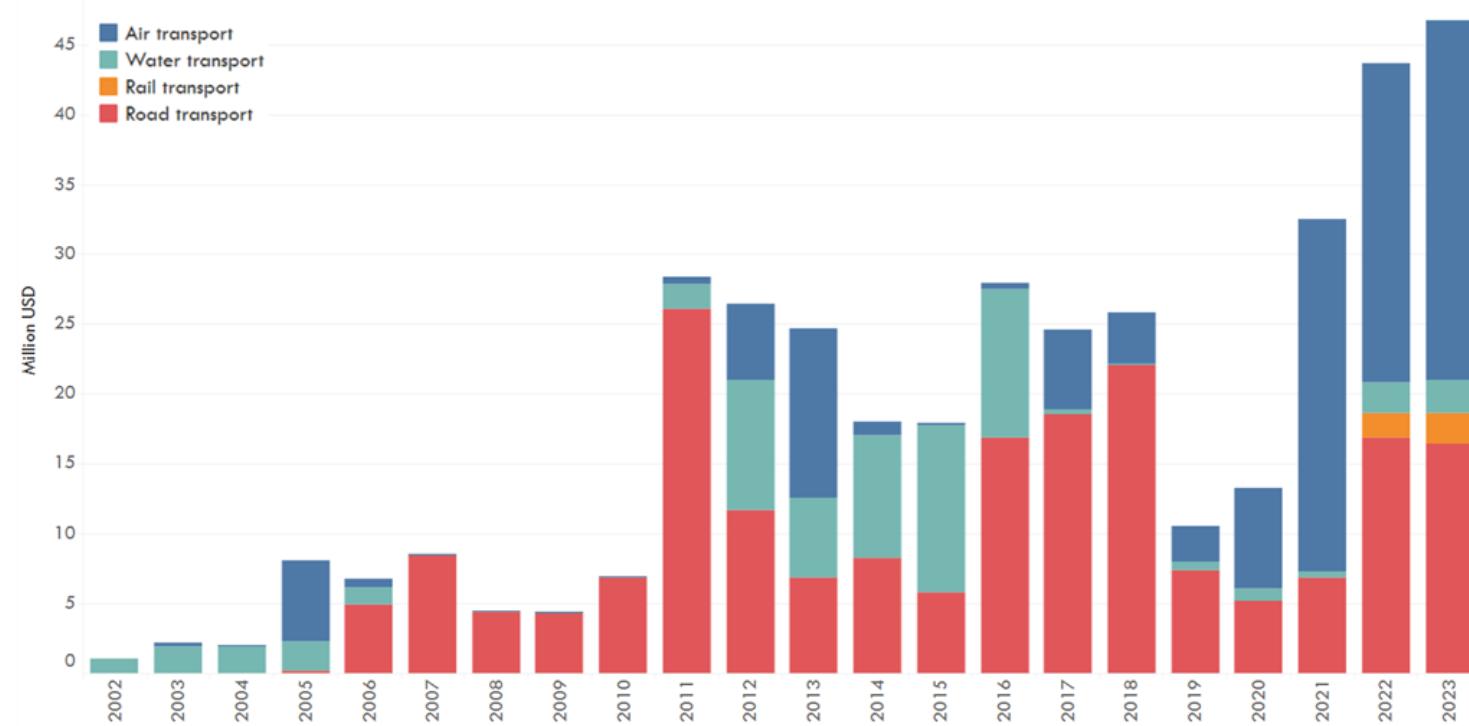


Figure 39: Official Development Assistance to the Transport Sector in Solomon Islands

Source: ATO analysis and visualization based on: (OECD 2025)

Official development assistance now plays a vital role in funding new transport projects, with multilateral banks and bilateral agencies financing roads, ports, and airports that the national budget alone cannot support.

Summary

The Solomon Islands faces a transport crossroads: a growing economy and impending LDC graduation conflict with fragile infrastructure, dispersed islands, increasing climate risks, and a transport system vital to development that remains underpowered. The review highlights a country where mobility, access, and decarbonization goals surpass institutional capacity, fiscal resources, and asset durability.

Geography influences every decision. About 820,000 people live across around 90 inhabited islands. Yet, two-thirds of the road network and most sealed surfaces are concentrated in Guadalcanal and Malaita, leaving large populations physically and economically isolated. Only a small portion of roads are maintainable, bridges are consistently underprovided, and an estimated 240,000 rural residents lack all-weather roads, reducing participation in wage employment and cash crop farming.

Maritime and aviation networks remain limited and vulnerable. Two international ports, approximately 90 small jetties, an aging domestic vessel fleet, and 28 airfields—many community-run and climate-exposed—struggle to maintain basic service frequency and reliability. Liner connectivity and air trip rates lag behind Pacific peers, restricting trade, tourism, and economic growth.

In Greater Honiara, the population, jobs, services, and traffic are concentrated along a narrow coastal strip, funneling most movement through a single congested corridor and a limited bridge system. Minibus public transport dominates travel but operates informally and inefficiently, while rapid growth in private vehicles signals increasing congestion, oil dependency, and emissions. Road crashes and unsafe infrastructure are ongoing public health and development risks, with high fatality rates, an aging vehicle fleet, enforcement gaps, and limited systematic data on black spots. Recent plans aim to shift to a Safe System approach, improve engineering standards, and modernize crash reporting and licensing. Transport already consumes a large portion of national energy. It accounts for a quarter of greenhouse gas emissions, mostly from imported fossil fuels used by second-hand road vehicles and domestic shipping.

Although sectoral emissions briefly decreased, recent activity growth has reversed this trend, and without new measures, transport CO₂ is projected to nearly double by mid-century.

Policy ambition is high: the government has adopted an e-mobility roadmap with EV sales and charging targets, fiscal incentives, and public fleet electrification efforts. It also sets clear goals for reducing emissions from domestic shipping, including zero-emission vessels and electric outboard motors. However, grid carbon intensity, limited technical capacity, and fragmented implementation threaten to weaken the potential climate benefits of electrification and could delay the transition.

Access gaps are significant. Rural communities, remote provinces, and off-grid areas face infrequent shipping, difficult connections to hubs, and long travel times to urban centers and essential services, perpetuating structural disparities in income and opportunity. Within the sector, women make up nearly half of the population but hold only a small percentage of transport jobs. They still face unsafe public spaces, unreliable services, and barriers to decent work, despite the emergence of gender-responsive measures in national strategies.

Financing is tightening at the very moment when climate-resilient renewal is most needed. Domestic capital spending on transport has fallen, leaving maintenance underfunded and new works heavily dependent on external partners, with official development assistance now shouldering much of the risk for roads, ports, and airports. In contrast, private capital and PPPs remain tentative.

The report positions transport as both a foundation and a filter for the country's graduation and SDG trajectory: without better data, stronger institutions, and more predictable funding, new infrastructure will continue to erode faster than it can be built.

Taken together, the review describes a system that is both essential and fragile: connectivity raises incomes and access to services, but today's transport sector—characterized by coastal exposure, low maintenance, aging fleets, and weak safety regimes—perpetuates risk and inequality. The review identifies three main shifts: maintaining and climate-proofing existing assets, rebalancing networks to improve access, and aligning low-carbon technology deployment with grid transformation to close the transport structural gap before it becomes irreversible.

References

ADB. 2020. Solomon Islands: Land and Maritime Connectivity Project – Multitranche Financing Facility. <https://www.adb.org/sites/default/files/project-documents/53421/53421-001-iee-en.pdf>.

ADB. 2025. “Growth in the Pacific to Accelerate to 4.1% in 2025, Moderate to 3.4% in 2026 — ADB.” Text. September 30. Cook Islands, Fiji, Kiribati, Marshall Islands, Micronesia, Federated States of, Nauru, Niue, Palau, Papua New Guinea, Samoa, Solomon Islands, Tonga, Tuvalu, Vanuatu. <https://www.adb.org/news/growth-pacific-accelerate-4-1-percent-2025-moderate-3-4-percent-2026-adb>.

ATO. 2025a. “A Dashboard for Sustainable Transport in Asia and the Pacific - Asian Transport Observatory.” <https://asiantransportobservatory.org/analytical-outputs/sdg-and-decade-of-action-2025/>.

ATO. 2025b. “Asia and the Pacific’s Transport Infrastructure and Investment Outlook 2035.” <https://asiantransportobservatory.org/analytical-outputs/asia-transport-infrastructure-investment-needs/>.

Barrington-Leigh, Christopher, and Adam Millard-Ball. 2025. A High-Resolution Global Time Series of Street-Network Sprawl. <https://journals.sagepub.com/doi/10.1177/23998083241306829>.

CDRI. n.d. “Global Infrastructure Risk Model and Resilience Index.” <https://giri.unepgrid.ch/>.

Center for International Earth Science Information Network. 2023. “SDG Indicator 9.1.1: The Rural Access Index (RAI), 2023 Release: Sustainable Development Goal Indicators (SDGI) | SEDAC.” <https://sedac.ciesin.columbia.edu/data/set/sdgi-9-1-1-rai-2023>.

CIESIN. 2023. “SDG Indicator 11.2.1: Urban Access to Public Transport, 2023 Release: Sustainable Development Goal Indicators (SDGI).” <https://sedac.ciesin.columbia.edu/data/set/sdgi-11-2-1-urban-access-public-transport-2023>.

Climate Trace. 2025. “Climate TRACE Website.” Climate TRACE. <https://climatetrace.org>.

Crippa, Monica, Diego Guzzardi, Federico Pagani, et al. 2024. “GHG Emissions of All World Countries.” Preprint. <https://doi.org/10.2760/4002897>.

EDGAR. 2025. GHG Emissions of All World Countries: 2025. Publications Office. <https://data.europa.eu/doi/10.2760/9816914>.

EMBER. n.d. “Open Data | Electricity & Climate.” Ember. <https://ember-climate.org/data/>.

European Commission. 2024. “Global Air Pollutant Emissions EDGAR v8.1.” https://edgar.jrc.ec.europa.eu/dataset_ap61#sources.

Government of the Solomon Islands. 1996. Traffic Act 1996. http://www.paclii.org/cgi-bin/sinodisp/sb/legis/consol_act/ta77/ta77.html?stem=&synonyms=&query=traffic.

Government of the Solomon Islands. 2014. Solomon Islands National Energy Policy 2014. https://cdn.climatepolicyradar.org/navigator/SLB/2014/solomon-islands-national-energy-policy-2014_1724508d3fe3d68fa8133c2c327cd584.pdf.

Government of the Solomon Islands. 2016a. National Development Strategy 2016–2035. https://cdn.climatepolicyradar.org/navigator/SLB/2016/national-development-strategy-2016-2035_b8b5844985fa3730501bd54748ef17b0.pdf.

Government of the Solomon Islands. 2016b. Solomon Islands National Transport Plan 2017-2036. <https://www.ntf.gov.sb/resources/documents-files/9-171107-ntp-final-complete/file>.

Government of the Solomon Islands. 2018. Medium Term Transport Action Plan 2019-2023. http://sirap.sb/images/Docs/Medium_Term_Transport_Action_Plan_2019-23_v03.pdf.

Government of the Solomon Islands. 2021a. NDC Report 2021 Final Solomon Islands. <https://unfccc.int/sites/default/files/NDC/2022-06/NDC%20Report%202021%20Final%20Solomon%20Islands%20%281%29.pdf>.

Government of the Solomon Islands. 2021b. Solomon Islands 2021 Nationally Determined Contributions. <https://unfccc.int/sites/default/files/NDC/2022-06/NDC%20Report%202021%20Final%20Solomon%20Islands%20%281%29.pdf>.

Government of the Solomon Islands. 2021c. Solomon Islands Priority Infrastructure Investment Pipeline. <https://www.theprif.org/sites/default/files/documents/SI%20Priority%20Pipeline%20Aug21.pdf>.

Government of the Solomon Islands. 2022. Policy Roadmap for E-mobility in the Solomon Islands. <https://www.ctc-n.org/system/files/dossier/3b/3.2%20Roadmap%20for%20E%20Mobility-Solomon%20Island%20Final%20Draft%2001%20September%202022.pdf>.

Government of the Solomon Islands. 2023a. Solomon Islands Action Plan to Reduce CO2 Emissions from International Aviation. <https://www.icao.int/environmental-protection/Documents/ActionPlan/SOLOMON%20ISLANDS%20STATE%20ACTION%20PLAN%20Initial%20Issue%2030%20Nov2023.pdf>.

Government of the Solomon Islands. 2023b. SOLOMON ISLANDS MARITIME AUTHORITY CORPORATE PLAN 2024- 2027. <https://www.sima.gov.sb/wp-content/uploads/1-Corporate-Plan-2024-2027-V0-01-12-2023.pdf>.

Government of the Solomon Islands. 2023c. THE SOLOMON ISLANDS LONG-TERM LOW EMISSIONS DEVELOPMENT STRATEGY (LEDS). <https://unfccc.int/sites/default/files/resource/SOLOMON%20ISLANDS%20LEDS.pdf>.

Government of the Solomon Islands. 2024a. Solomon Islands Maritime Development & Resilience Strategy 2024-2030. <https://www.sima.gov.sb/wp-content/uploads/Concept-Note-Maritime-Development-Resilience-Strategy-v2-13-07-2023-3.pdf>.

Government of the Solomon Islands. 2024b. Solomon Islands. National Communication (NC). NC 3. https://app.climatepolicyradar.org/document/solomon-islands-national-communication-nc-nc-3_e177?sf=date&so=desc&l=solomon-islands.

Government of the Solomon Islands. 2024c. Solomon Islands National Disaster Risk Financing Strategy 2024 - 2027. https://solomons.gov.sb/wp-content/uploads/2025/06/Solomon-Islands-National-Disaster-Risk-Financing-Strategy-2024-2027_FINAL.pdf.

Government of the Solomon Islands. 2025a. Design Phase Commences for Malaita Roads Upgrade Under SIRAP2. <https://solomons.gov.sb/design-phase-commences-for-malaita-roads-upgrade-under-sirap2/>.

Government of the Solomon Islands. 2025b. JICA and Solomon Islands Collaborate on Urban Transport Management Project. February 13. <https://solomons.gov.sb/jica-and-solomon-islands-collaborate-on-urban-transport-management-project/>.

Government of the Solomon Islands. 2025c. MINISTRY OF FINANCE & TREASURY - CORPORATE PLAN 2025 - 2027. https://solomons.gov.sb/wp-content/uploads/2025/10/250814-MoFT-Public_Corporate-Plan-2025-2027.pdf.

Government of the Solomon Islands. 2025d. NATIONALLY DETERMINED CONTRIBUTION 3.0 2025-2035. https://unfccc.int/sites/default/files/2025-08/Solomon%20Islands%20NDC3.0_0.pdf.

Government of the Solomon Islands. 2025e. Smooth Transition Strategy to Support Graduation from Least Developed Country Status. https://solomons.gov.sb/wp-content/uploads/2025/05/Solomon-Islands_Smooth-Transition-Strategy-c.pdf.

Government of the Solomon Islands. n.d. Ministry of Infrastructure Development – My SIG Services Portal. Accessed December 9, 2025. <https://solomons.gov.sb/ministry-of-infrastructure-development/>.

GV2050. n.d. "GreenVoyage2050." Accessed December 8, 2025. <https://greenvoyage2050.imo.org/>.

Hanson, Susan, and Robert Nicholls. 2020. "Demand for Ports to 2050: Climate Policy, Growing Trade and the Impacts of Sea-Level Rise." July 17. <https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020EF001543>.

ICAO. 2025. SOLOMON ISLANDS ACTION PLAN TO REDUCE CO2 EMISSIONS FROM INTERNATIONAL AVIATION. https://www.icao.int/sites/default/files/environmental-protection/State_Action_Plans/Solomon-Islands-State-Action-Plan-2025.pdf.

IHME. 2021. Global Burden of Disease Study 2021. <https://ghdx.healthdata.org/gbd-2021>.

ILO. 2025. "ILOSTAT." <https://rplumber.ilo.org/files/website/bulk/indicator.html>.

IMF. 2024. "Climate Change Dashboard." <https://climatedata.imf.org/pages/access-data>.

International Labour Organization. 2024. "Indicators and Data Tools." ILOSTAT. <https://ilo.stat.ilo.org/>.

International Maritime Organization, Pacific Community, and Secretariat of the Pacific Regional Environment Programme. 2024. Pacific Ports Vision 2030-2050 Recognition Framework. https://www.spc.int/DigitalLibrary/Doc/GSD/Maritime_Transport/Others/Pacific_Ports_Vision_Recognition_Framework_1.pdf.

ITDP. 2024. "The Atlas of Sustainable City Transport." <https://atlas.itdp.org/>.

ITU. 2025. "Individuals Using the Internet." <https://www.itu.int:443/en/ITU-D/Statistics/Pages/stat/default.aspx>.

JICA. 2022a. "Greater Honiara Transport Master Plan Study (GHTMPS)." https://openjicareport.jica.go.jp/pdf/12342457_01.pdf.

JICA. 2022b. THE PROJECT FOR GREATER HONIARA TRANSPORT MASTERPLAN STUDY. https://openjicareport.jica.go.jp/pdf/12342457_01.pdf.

Nirandjan, Sadhana, E. Koks, Philip J. Ward, and Jeroen C. J. H. Aerts. 2022. "A Spatially-Explicit Harmonized Global Dataset of Critical Infrastructure." *Scientific Data* 9 (1): 150. <https://doi.org/10.1038/s41597-022-01218-4>.

OECD. 2025. "OECD Data Explorer." <https://data-explorer.oecd.org/>.

OpenStreetMap contributors. 2025. "OpenStreetMap." OpenStreetMap. <https://www.openstreetmap.org/>.

SDSN. 2025. "World Accessibility Indicators." April 18. <https://sdsn.maps.arcgis.com/home/item.html?id=d41d2e9a3682405daae7d74dd8e60237>.

SDSN. n.d. "SDG Transformation Center." Accessed December 8, 2025. <https://sdg-transformation-center-sdsn.hub.arcgis.com/datasets/sdsn::rural-access-index-2022-by-country/about>.

Solomon Islands Maritime Authority (SIMA). 2025. Solomon Islands Plan for a Sustainable Maritime Future. <https://www.sima.gov.sb/wp-content/uploads/Solomon-Islands-Plan-for-a-Sustainable-Maritime-Future-FINAL.pdf>.

State of Global Air. 2024. "State of Global Air Report 2024." <https://www.stateofglobalair.org/resources/report/state-global-air-report-2024>.

Sum4all. 2022. Mobility Performance at a Glance. https://www.sum4all.org/sites/default/files/d7/mobilityataglancereport-2022-pagebypage_web.pdf.

Trademap. 2025. "Trade Map." Trade Map. <https://www.trademap.org/Index.aspx>.

UN. n.d. "Solomon Islands Graduation Status | LDC Portal - International Support Measures for Least Developed Countries." Accessed December 8, 2025. <https://www.un.org/lcdportal/content/solomon-islands-graduation-status>.

UNCTAD. 2021. "Remote but Well Connected? Neighboring but Isolated? Measuring Remoteness in the Context of SIDS." https://unctad.org/system/files/official-document/ser-rp-2021d10_en.pdf.

UNCTAD. 2024. "Liner Shipping Connectivity Index." UNCTADStat. <https://unctadstat.unctad.org/datacentre/dataviewer/US.LSCI>.

UNCTAD. 2025. "UNCTAD Data Hub - LSCI." <https://unctadstat.unctad.org/datacentre/dataviewer/US.LSCI>.

UNCTAD. n.d. "UNCTAD Framework for Sustainable Freight Transport." Accessed November 22, 2024. <https://sft-framework.unctad.org/>.

UN-DESA. n.d. "World Urbanization Prospects." Accessed December 10, 2025. <https://population.un.org/wup/downloads>.

UN-Habitat. 2024. "SDG 11.2.1: Proportion of Population That Has Convenient Access to Public Transport, by Sex, Age and Persons with Disabilities." <https://data.unhabitat.org/pages/urban-transport>.

United Nations Department of Economic and Social Affairs Population Division. 2022. "World Population Prospects." <https://population.un.org/wpp/>.

United Nations Statistics Division. 2024. "UNSD — Energy Statistics." <https://unstats.un.org/unsd/energystats/data>.

UNStats. n.d. "Downloads - amaWebClient." Accessed November 22, 2024. <https://unstats.un.org/unsd/snaama/Downloads>.

Verschuur, Jasper, Elco E. Koks, Li Sihan, and Jim W. Hall. 2023. "Multi-Hazard Risk to Global Port Infrastructure and Resulting Trade and Logistics Losses | Communications Earth & Environment." *Commun Earth Environ* 4 (5). <https://www.nature.com/articles/s43247-022-00656-7>.

WB. 2018. Project Information Document/ Integrated Safeguards Data Sheet (PID/ISDS). <https://documents1.worldbank.org/curated/en/927421529622229948/pdf/Concept-Project-Information-Document-Integrated-Safeguards-Data-Sheet-Solomon-Islands-Roads-and-Aviation-Project-P166622.pdf>.

WB. 2020. Road Safety Management Capacity Assessment for the Solomon Islands. <https://www.globalroadsafetyfacility.org/sites/default/files/2023-10/Road%20Safety%20Management%20Capacity%20Assessment%20for%20the%20Solomon%20Islands.pdf>.

WB. 2022a. Resilient Transport in Small Island Developing States. <https://documents1.worldbank.org/curated/en/099840104262222525/pdf/P1641570ed55c3096098670e0fd1a73eb3a.pdf>.

WB. 2022b. SOLOMON ISLANDS PUBLIC EXPENDITURE REVIEW. <https://documents1.worldbank.org/curated/en/099045011022232825/pdf/P177544053286b0930bdde0fe43cbebc28.pdf>.

WB. 2023. A Blue Transformation for Pacific Maritime Transport. <https://documents1.worldbank.org/curated/en/099062723183020066/pdf/P1749900249d300fa0910307401e677b5ae.pdf>.

WB. 2024. Solomon Islands: Country Economic Memorandum.
https://documents1.worldbank.org/curated/en/099091324035518530/pdf/P18025412ebb7b02118e9812a81a1b465d2.pdf?_gl=1*1ig3w7z*_gcl_au*MTI5ODM5ODc4MS4xNzI1MzcyNDI0.

WB. 2025. Session 3. Fiscal Innovations: Solomon Islands Transport Maintenance Fund.
<https://thedocs.worldbank.org/en/doc/33b444c303cd6cb061209e41200e724b-0070012025/related/Session-3-From-NTF-to-TMF-Fiscal-Resilience-event.pdf>.

Weiss, D. J., A. Nelson, C. A. Vargas-Ruiz, et al. 2020. "Global Maps of Travel Time to Healthcare Facilities." *Nature Medicine* 26 (12): 1835–38.
<https://doi.org/10.1038/s41591-020-1059-1>.

Wiedenhofer, Dominik, André Baumgart, Sarah Matej, et al. 2024. "Mapping and Modelling Global Mobility Infrastructure Stocks, Material Flows and Their Embodied Greenhouse Gas Emissions." *Journal of Cleaner Production* 434 (January): 139742.
<https://doi.org/10.1016/j.jclepro.2023.139742>.

World Bank. 2021. "Air Transport, Registered Carrier Departures Worldwide." World Bank Open Data. <https://data.worldbank.org>.

World Bank. 2022. The Global Health Cost of PM2.5 Air Pollution: A Case for Action Beyond 2021. The World Bank. <https://doi.org/10.1596/978-1-4648-1816-5>.

World Bank. 2023. "GDP, PPP (Current International \$)." World Bank Open Data.
<https://data.worldbank.org/indicator/NY.GDP.MKTP.PP.CD>.

World Bank. 2024. "Home | Logistics Performance Index (LPI)." Logistics Performance Index. <https://lpi.worldbank.org/>.

World Bank. 2025. Solomon Islands Roads and Aviation Project (P166622).
<https://documents1.worldbank.org/curated/en/099070125181528611/pdf/BOSIB-5a68081f-6e1b-4a63-ad92-97bad1767af5.pdf>.

World Obesity Federation. n.d. "Solomon Islands." Global Obesity Observatory. Accessed December 10, 2025. <https://data.worldobesity.org/country/solomon-islands-195>

Annex 1. Economy ISO Codes

ISO CODE	ECONOMY NAME	REGION	INCOME GROUP	ISO CODE	ECONOMY NAME	REGION	INCOME GROUP
AFG	Afghanistan	Asia	Low income	NRU	Nauru	Oceania	High income
ARM	Armenia	Asia	Upper middle income	NPL	Nepal	Asia	Lower middle income
AUS	Australia	Oceania	High income	NZL	New Zealand	Oceania	High income
AZE	Azerbaijan	Asia	Upper middle income	PAK	Pakistan	Asia	Lower middle income
BGD	Bangladesh	Asia	Lower middle income	PLW	Palau	Oceania	High income
BTN	Bhutan	Asia	Lower middle income	PNG	Papua New Guinea	Oceania	Lower middle income
BRN	Brunei Darussalam	Asia	High income	PHL	Philippines	Asia	Lower middle income
KHM	Cambodia	Asia	Lower middle income	KOR	Republic of Korea	Asia	High income
CHN	People's Republic of China	Asia	Upper middle income	WSM	Samoa	Oceania	Lower middle income
COK	Cook Islands	Oceania	Upper middle income	SGP	Singapore	Asia	High income
FJI	Fiji	Oceania	Upper middle income	SLB	Solomon Islands	Oceania	Lower middle income
GEO	Georgia	Asia	Upper middle income	LKA	Sri Lanka	Asia	Lower middle income
IND	India	Asia	Lower middle income	TJK	Tajikistan	Asia	Lower middle income
IDN	Indonesia	Asia	Upper middle income	THA	Thailand	Asia	Upper middle income
JPN	Japan	Asia	High income	TLS	Timor-Leste	Asia	Lower middle income
KAZ	Kazakhstan	Asia	Upper middle income	TON	Tonga	Oceania	Upper middle income
KIR	Kiribati	Oceania	Lower middle income	TKM	Turkmenistan	Asia	Upper middle income
KGZ	Kyrgyz Republic	Asia	Lower middle income	TUV	Tuvalu	Oceania	Upper middle income
LAO	Lao People's Democratic Republic	Asia	Lower middle income	UZB	Uzbekistan	Asia	Lower middle income
MYS	Malaysia	Asia	Upper middle income	VUT	Vanuatu	Oceania	Lower middle income
MDV	Maldives	Asia	Upper middle income	VNM	Viet Nam	Asia	Lower middle income
MHL	Marshall Islands	Oceania	Upper middle income	HKG	Hong Kong, China	Asia	High income
FSM	Micronesia (Federated States of)	Oceania	Lower middle income	TWN	Taipei, China	Asia	High income
MNG	Mongolia	Asia	Upper middle income	IRN	Iran (Islamic Republic of)	Asia	Upper middle income
MMR	Myanmar	Asia	Lower middle income	RUS	Russian Federation	Asia	High income
NIU	Niue	Oceania	Upper middle income	TUR	Turkiye	Asia	Upper middle income

